Completely degenerate lower-dimensional invariant tori for Hamiltonian system

被引:23
作者
Hu, Shengqing [1 ]
Liu, Bin [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Lower-dimensional tori; Completely degenerate Hamiltonian systems; KAM iteration; RESPONSE SOLUTIONS;
D O I
10.1016/j.jde.2018.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the persistence of lower-dimensional invariant tori for a nearly integrable completely degenerate Hamiltonian system. It is shown that the majority of unperturbed invariant tori can survive from the perturbations which are only assumed the smallness and smoothness. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:7459 / 7480
页数:22
相关论文
共 13 条
[1]  
王乾, 2002, [中国科学. A辑, 数学, Science in China], V32, P640
[2]  
Eliasson L. H., 1988, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V15, P115
[3]   CONSERVATION OF HYPERBOLIC INVARIANT TORI FOR HAMILTONIAN SYSTEMS [J].
GRAFF, SM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (01) :1-69
[4]   Degenerate lower-dimensional tori in Hamiltonian systems [J].
Han, Yuecai ;
Li, Yong ;
Yi, Yingfei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (02) :670-691
[5]  
Kuksin S. B., 1993, LECT NOTES MATH, V1556
[6]   On lower dimensional invariant tori in reversible systems [J].
Liu, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) :158-194
[7]   CONVERGENT SERIES EXPANSIONS FOR QUASI-PERIODIC MOTIONS [J].
MOSER, J .
MATHEMATISCHE ANNALEN, 1967, 169 (01) :136-&
[8]   ON ELLIPTIC LOWER DIMENSIONAL TORI IN HAMILTONIAN-SYSTEMS [J].
POSCHEL, J .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (04) :559-608
[9]   Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems [J].
Si, Wen ;
Si, Jianguo .
NONLINEARITY, 2018, 31 (06) :2361-2418
[10]   Construction of response solutions for two classes of quasi-periodically forced four-dimensional nonlinear systems with degenerate equilibrium point under small perturbations [J].
Si, Wen ;
Si, Jianguo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (09) :4771-4822