Dirac Operators with Delta-Interactions on Smooth Hypersurfaces in Rn

被引:0
作者
Rabinovich, Vladimir [1 ]
机构
[1] Inst Politecn Nacl, ESIME Zacatenco, Mexico City, DF, Mexico
关键词
Dirac operators; Singular potentials; Delta-interactions; Self-adjointness; Essential spectrum; SCHRODINGER-OPERATORS; ESSENTIAL SPECTRUM; SELF-ADJOINTNESS; MODEL;
D O I
10.1007/s00041-022-09917-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirac operators with singular potentials D-A,D-Phi,D-m,D-Gamma delta Sigma = D-A,D-Phi,D-m + Gamma delta(Sigma) (1) where D-A,D-Phi,D-m = Sigma(n)(j=1) alpha(j)(-i partial derivative(chi j) + A(j)) + alpha(n) + (1)m + Phi I-N (2) is a Dirac operator on R-n with variable magnetic and electrostatic potentials A = (A(1), ..., A(n)) is an element of L-infinity (R-n, C-n) and Phi is an element of L-infinity (R-n), and the variable mass m is an element of L-infinity (R-n). In formula (2) alpha(j) are the N x N Dirac matrices, that is alpha(j)alpha(k) + alpha k alpha(j) = 2 delta I-jk(N), I-N is the unit N x N matrix, N = 2([(n + 1)/2]). In formula (1) Gamma delta(Sigma) is a singular delta-type potential supported by a C-2-hypersurface Sigma subset of R-n which is the common boundary of the open sets Omega(+/-). Let H-1 (Omega(+/-) , C-N) be the Sobolev spaces of N-dimensional vector-valued distributions u on Omega(+/-), and H-1(R-n\Sigma,C-N) = H-1(Omega(+), C-N) circle plus H-1(Omega(-), C-N). We associate with the formal Dirac operator D-A,D-Phi,D-m,D-Gamma delta Sigma an unbounded in L-2(R-n, C-N) operator D-A,D-Phi,D-m,D-B Sigma defined by the Dirac operator D-A,D-Phi,D-m with domain domD(A,Phi,m,B Sigma) subset of H-1(R-n\Sigma, C-N) defined by an interaction conditions. The main aims of the paper are the study of self-adjointmess of the operators D-A,D-Phi,D-m,D-B Sigma for uniformly regular C-2-hypersurfaces Sigma subset of R-n and the essential spectra of D-A,D-Phi,D-m,D-B Sigma for closed C-2-hypersurfaces Sigma subset of R-n.
引用
收藏
页数:26
相关论文
共 38 条
  • [1] Agranovich M.S., 1964, USPEKHI MAT NAUK, V219, P63
  • [2] Agranovich M. S., 2010, Partial Differential Equations, IX, V0, P0
  • [3] Amann H., 2016, Recent Developments of Mathematical Fluid Mechanics
  • [4] Shell interactions for Dirac operators
    Arrizabalaga, Naiara
    Mas, Albert
    Vega, Luis
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04): : 617 - 639
  • [5] Two-dimensional Dirac operators with singular interactions supported on closed curves
    Behrndt, Jussi
    Holzmann, Markus
    Ourmieres-Bonafos, Thomas
    Pankrashkin, Konstantin
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [6] Behrndt J, 2019, QUANTUM STUD-MATH FD, V6, P295, DOI 10.1007/s40509-019-00186-6
  • [7] On the spectral properties of Dirac operators with electrostatic δ-shell interactions
    Behrndt, Jussi
    Exner, Pavel
    Holzmann, Markus
    Lotoreichik, Vladimir
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 111 : 47 - 78
  • [8] Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots
    Benguria, Rafael D.
    Fournais, Soren
    Stockmeyer, Edgardo
    Van den Bosch, Hanne
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)
  • [9] Self-Adjointness of Two-Dimensional Dirac Operators on Domains
    Benguria, Rafael D.
    Fournais, Soren
    Stockmeyer, Edgardo
    Van Den Bosch, Hanne
    [J]. ANNALES HENRI POINCARE, 2017, 18 (04): : 1371 - 1383
  • [10] NEUTRINO BILLIARDS - TIME-REVERSAL SYMMETRY-BREAKING WITHOUT MAGNETIC-FIELDS
    BERRY, MV
    MONDRAGON, RJ
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 412 (1842): : 53 - 74