Features of carbon layers synthesis on the porous anodic alumina

被引:0
|
作者
Simunin, M. M. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, KSC SB RAS, Krasnoyarsk 660036, Russia
[2] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[3] Reshetnev Univ, Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia
关键词
NANOTUBULE MEMBRANES; ION-TRANSPORT; PHOTOREGULATION; PERMEABILITY; PERMEATION;
D O I
10.1088/1742-6596/1679/2/022071
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Carbon nanotubes and graphene are two of the most important forms of nanoscale carbon materials. Both materials can be synthesized by CVD method with the use of various "catalysts". The term "catalyst" is conditional; it refers to a surface, on which graphite islands are formed at a relatively low temperature. Either carbon nanotubes or graphene layers can grow on the surface depending on its shape and physical-chemical properties. As a rule, the materials of such surfaces are the most common metals of auxiliary groups [1], in which the carbon is dissolved after chemical deposition from the gas phase. Then, as a result of supersaturation of carbon solution in metal, the carbon precipitates on the surface in the form of graphite islands, which combine into graphene or nanotubes. However, the ordered carbon structures can be obtained not only by dissolving carbon in metals, but also by using special surfaces, where the surface diffusion of carbon can occur. Aluminum oxide provides an example of such material.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Anodic porous alumina with elliptical apertures
    Kondo, Toshiaki
    Miyazaki, Hayato
    Yanagishita, Takashi
    Masuda, Hideki
    ELECTROCHEMISTRY COMMUNICATIONS, 2018, 96 : 61 - 65
  • [22] Optoelectronic applications of porous anodic alumina
    Molchan, IS
    Gaponenko, NV
    Thompson, GE
    Skeldon, P
    Tsyrkunov, DA
    Malyarevich, GK
    Stupak, AP
    TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2005, 83 (05): : 233 - 237
  • [23] Porous anodic alumina for photonics and optoelectronics
    Gavrilov, S
    Kravtchenko, D
    Zheleznyakova, A
    Timoshenko, V
    Kashkarov, P
    Melnikov, V
    Zaitsev, G
    Golovan, L
    MICRO- AND NANOELECTRONICS 2003, 2004, 5401 : 235 - 241
  • [24] Characterization of anodic porous alumina by AFM
    Sui, YC
    Saniger, JM
    MATERIALS LETTERS, 2001, 48 (3-4) : 127 - 136
  • [25] MAGNETIC NANOCOMPOSITES IN POROUS ANODIC ALUMINA
    Khodin, A.
    Vorobyova, A.
    Outkina, E.
    PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES, 2009, : 467 - +
  • [26] A tracer study of porous anodic alumina
    Skeldon, P.
    Thompson, G. E.
    Garcia-Vergara, S. J.
    Iglesias-Rubianes, L.
    Blanco-Pinzon, C. E.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (11) : B47 - B51
  • [27] Formation process of porous anodic alumina
    Zhu, Xu-Fei
    Li, Dong-Dong
    Meng, Da-Wei
    Xiao, Ying-Hong
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2006, 30 (05): : 644 - 648
  • [28] Field emission properties of carbon nanotube arrays grown in porous anodic alumina
    Angelucci, A.
    Ciorba, A.
    Malferrari, L.
    Odorici, F.
    Rizzoli, R.
    Rossi, M.
    Sessa, V.
    Terranova, M. L.
    Veronese, G. P.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 10, 2009, 6 (10): : 2164 - +
  • [29] Growth of carbon nanotubes inside porous anodic alumina membranes: Simulation and experiment
    Ryzhkov, Ilya I.
    Kharchenko, Ivan A.
    Mikhlina, Elena, V
    Minakov, Andrey, V
    Guzei, Dmitry, V
    Nemtsev, Ivan, V
    Volochaev, Mikhail N.
    Korobko, Anna, V
    Simunin, Mikhail M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 176
  • [30] Growth of carbon nanotubes inside porous anodic alumina membranes: Simulation and experiment
    Ryzhkov, Ilya I.
    Kharchenko, Ivan A.
    Mikhlina, Elena V.
    Minakov, Andrey V.
    Guzei, Dmitry V.
    Nemtsev, Ivan V.
    Volochaev, Mikhail N.
    Korobko, Anna V.
    Simunin, Mikhail M.
    International Journal of Heat and Mass Transfer, 2021, 176