Deep Learning-based Method for Denoising and Image Enhancement in Low-Field MRI

被引:5
|
作者
Dang Bich Thuy Le [1 ]
Sadinski, Meredith [1 ]
Nacev, Aleksandar [1 ]
Narayanan, Ram [1 ]
Kumar, Dinesh [1 ]
机构
[1] Promaxo, Oakland, CA 94607 USA
关键词
MRI; U-Net; deep learning; image enhancement; denoising; simulated data;
D O I
10.1109/IST50367.2021.9651441
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has proven successful in a variety of medical image processing applications, including denoising and removing artifacts. This is of particular interest for low field Magnetic Resonance Imaging (MRI), which is promising for its affordability, compact footprint, and reduced shielding requirements, but inherently suffers from low signal-to-noise ratio. In this work, we propose a method of simulating scanner specific images from publicly available, 1.5T and 3T database of MR images, using a signal encoding matrix incorporating explicitly modeled imaging gradients and fields. We apply a stacked, U-Net architecture to reduce noise from the system and remove artifacts due to the inhomogeneous B0 field, nonlinear gradients, undersampling of k-space and image reconstruction to enhance low-field MR images. The final network is applied as a post-processing step following image reconstruction to phantom and human images acquired on a 60-67mT MR scanner and demonstrates promising qualitative and quantitative improvements to overall image quality.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain
    Feuerriegel, Georg C.
    Weiss, Kilian
    Kronthaler, Sophia
    Leonhardt, Yannik
    Neumann, Jan
    Wurm, Markus
    Lenhart, Nicolas S.
    Makowski, Marcus R.
    Schwaiger, Benedikt J.
    Woertler, Klaus
    Karampinos, Dimitrios C.
    Gersing, Alexandra S.
    EUROPEAN RADIOLOGY, 2023, 33 (07) : 4875 - 4884
  • [2] Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain
    Georg C. Feuerriegel
    Kilian Weiss
    Sophia Kronthaler
    Yannik Leonhardt
    Jan Neumann
    Markus Wurm
    Nicolas S. Lenhart
    Marcus R. Makowski
    Benedikt J. Schwaiger
    Klaus Woertler
    Dimitrios C. Karampinos
    Alexandra S. Gersing
    European Radiology, 2023, 33 : 4875 - 4884
  • [3] IMPROVING IMAGE QUALITY IN LOW-FIELD MRI WITH DEEP LEARNING
    Hernandez, Armando Garcia
    Fau, Pierre
    Rapacchi, Stanislas
    Wojak, Julien
    Mailleux, Hugues
    Benkreira, Mohamed
    Adel, Mouloud
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 260 - 263
  • [4] Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging
    Yoo, Roh-Eul
    Choi, Seung Hong
    MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2024, : 341 - 351
  • [5] Deep learning-based single image super-resolution for low-field MR brain images
    den Bouter, M. L. de Leeuw
    Ippolito, G.
    O'Reilly, T. P. A.
    Remis, R. F.
    van Gijzen, M. B.
    Webb, A. G.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Deep learning-based single image super-resolution for low-field MR brain images
    M. L. de Leeuw den Bouter
    G. Ippolito
    T. P. A. O’Reilly
    R. F. Remis
    M. B. van Gijzen
    A. G. Webb
    Scientific Reports, 12
  • [7] Deep learning for fast low-field MRI acquisitions
    Reina Ayde
    Tobias Senft
    Najat Salameh
    Mathieu Sarracanie
    Scientific Reports, 12
  • [8] Deep learning for fast low-field MRI acquisitions
    Ayde, Reina
    Senft, Tobias
    Salameh, Najat
    Sarracanie, Mathieu
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction
    Koonjoo, N.
    Zhu, B.
    Bagnall, G. Cody
    Bhutto, D.
    Rosen, M. S.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction
    N. Koonjoo
    B. Zhu
    G. Cody Bagnall
    D. Bhutto
    M. S. Rosen
    Scientific Reports, 11