List injective coloring of planar graphs with girth g ≥ 6

被引:9
作者
Chen, Hong-Yu [1 ]
Wu, Jian-Liang [2 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Planar graph; List injective coloring; Girth; CHROMATIC NUMBER;
D O I
10.1016/j.disc.2016.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex coloring of a graph G is called injective if any two vertices with a common neighbor receive distinct colors. A graph G is injectively k-choosable if any list L of admissible colors on V(G) of size k allows an injective coloring phi such that phi(v) is an element of L(v) whenever v is an element of V(G). The least k for which G is injectively k-choosable is denoted by chi(1)(i)(G). In this paper, we show that if G is a planar graph with girth g >= 6, then chi(1)(i)(G) <= Delta + 3. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3043 / 3051
页数:9
相关论文
共 29 条
  • [1] Coloring powers of planar graphs
    Agnarsson, G
    Halldórsson, MM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (04) : 651 - 662
  • [2] Agnarsson G, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P654
  • [3] Borodin OV, 2006, SIB ELECTRON MATH RE, V3, P441
  • [4] Injective (Δ+1)-coloring of planar graphs with girth 6
    Borodin, O. V.
    Ivanova, A. O.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (01) : 23 - 29
  • [5] List injective colorings of planar graphs
    Borodin, O. V.
    Ivanova, A. O.
    [J]. DISCRETE MATHEMATICS, 2011, 311 (2-3) : 154 - 165
  • [6] 2-distance (Δ+2)-coloring of planar graphs with girth six and Δ ≥ 18
    Borodin, O. V.
    Ivanova, A. O.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (23-24) : 6496 - 6502
  • [7] Borodin O.V., 2009, SIB MAT ZH, V6, P1216
  • [8] Borodin O.V., 2005, DISKRETN ANAL ISSLED, V12, P32
  • [9] List 2-distance (Δ+2)-coloring of planar graphs with girth six
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1257 - 1262
  • [10] Borodin Oleg V., 2004, SIB ELEKT MAT IZV, V1, P76