Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks

被引:35
|
作者
Lopez-Cortes, Andres [1 ,2 ,3 ]
Cabrera-Andrade, Alejandro [2 ,4 ,5 ]
Vazquez-Naya, Jose M. [2 ,6 ,7 ]
Pazos, Alejandro [2 ,6 ,7 ]
Gonzales-Diaz, Humberto [8 ,9 ]
Paz-y-Mino, Cesar [1 ]
Guerrero, Santiago [1 ]
Perez-Castillo, Yunierkis [4 ,10 ]
Tejera, Eduardo [4 ,11 ]
Munteanu, Cristian R. [2 ,6 ,7 ]
机构
[1] Univ UTE, Ctr Invest Genet & Genom, Fac Ciencias Salud Eugenio Espejo, Quito 170129, Ecuador
[2] Univ A Coruna, Comp Sci Fac, RNASA IMEDIR, Coruna 15071, Spain
[3] Red Latinoamer Implementac & Validac Gufas Clin F, Quito, Ecuador
[4] Univ Las Amer, Grp Bioquimioinformat, Ave Granados, Quito 170125, Ecuador
[5] Univ Las Amer, Fac Ciencias Salud, Carrera Enfermeria, Ave Granados, Quito 170125, Ecuador
[6] Ctr Invest Tecnol Informac & Comunicac CITIC, Campus Elvina S-N, La Coruna 15071, Spain
[7] Univ Hosp Complex A Coruna CHUAC, Biomed Res Inst A Coruna INIBIC, La Coruna 15006, Spain
[8] Univ Basque Country, Dept Organ Chem 2, UPV EHU, Leioa 48940, Biscay, Spain
[9] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Biscay, Spain
[10] Univ Las Amer, Escuela Ciencias Fis & Matemat, Ave Granados, Quito 170125, Ecuador
[11] Univ Las Amer, Fac Ingn & Ciencias Agr, Ave Granados, Quito 170125, Ecuador
关键词
CLASSIFICATION; GENES; IDENTIFICATION; BIOMARKERS; NUMBER; MODEL;
D O I
10.1038/s41598-020-65584-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design. This work is proposing accurate prediction classifier for BC proteins using six sets of protein sequence descriptors and 13 machine-learning methods. After using a univariate feature selection for the mix of five descriptor families, the best classifier was obtained using multilayer perceptron method (artificial neural network) and 300 features. The performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980 +/- 0.0037, and accuracy of 0.936 +/- 0.0056 (3-fold cross-validation). Regarding the prediction of 4,504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1. This powerful model predicts several BC-related proteins that should be deeply studied to find new biomarkers and better therapeutic targets. Scripts can be downloaded at https://github.com/muntisa/neural-networks-for-breast-cancer-proteins.
引用
收藏
页数:13
相关论文
共 21 条
  • [1] Unravelling the RNA-Binding Properties of SAFB Proteins in Breast Cancer Cells
    Hong, Elaine
    Best, Andrew
    Gautrey, Hannah
    Chin, Jas
    Razdan, Anshuli
    Curk, Tomaz
    Elliott, David J.
    Tyson-Capper, Alison J.
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [2] RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities
    Wang, Shimeng
    Sun, Hexing
    Chen, Guanyuan
    Wu, Chengyu
    Sun, Bingmei
    Lin, Jiajia
    Lin, Danping
    Zeng, De
    Lin, Baohang
    Huang, Guan
    Lu, Xiaofeng
    Lin, Haoyu
    Liang, Yuanke
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2024, 195
  • [3] Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure
    Deng, Lei
    Liu, Youzhi
    Shi, Yechuan
    Zhang, Wenhao
    Yang, Chun
    Liu, Hui
    BMC GENOMICS, 2020, 21 (Suppl 13)
  • [4] Prediction of Breast Cancer Diagnosis by Blood Biomarkers Using Artificial Neural Networks
    Benitez-Mata, Balam
    Castro, Carlos
    Castaneda, Ruben
    Vargas, Eunice
    Flores, Dora-Luz
    VIII LATIN AMERICAN CONFERENCE ON BIOMEDICAL ENGINEERING AND XLII NATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2020, 75 : 47 - 55
  • [5] Scrutinizing functional interaction networks from RNA-binding proteins to their targets in cancer
    Kumar, Sajal
    Zhong, Hua
    Sharma, Ruby
    Li, Yiyi
    Song, Mingzhou
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 185 - 190
  • [6] Breast cancer image classification using artificial neural networks
    Kaymak, Sertan
    Helwan, Abdulkader
    Uzun, Dilber
    9TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTION, ICSCCW 2017, 2017, 120 : 126 - 131
  • [7] An application of artificial neural networks in breast cancer recognition using scintimammography
    Swietlik, Dariusz
    Bandurski, Tomasz
    Masiuk, Mariusz
    WSPOLCZESNA ONKOLOGIA-CONTEMPORARY ONCOLOGY, 2007, 11 (08): : 385 - 389
  • [8] Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis
    Wu, Xiaoqing
    Gardashova, Gulhumay
    Lan, Lan
    Han, Shuang
    Zhong, Cuncong
    Marquez, Rebecca T.
    Wei, Lanjing
    Wood, Spencer
    Roy, Sudeshna
    Gowthaman, Ragul
    Karanicolas, John
    Gao, Fei P.
    Dixon, Dan A.
    Welch, Danny R.
    Li, Ling
    Ji, Min
    Aube, Jeffrey
    Xu, Liang
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [9] Prediction of melting point of indols based on using molecular structure artificial neural networks
    Vivas-Reyes, R.
    Valencia, R.
    Ramirez, N.
    AFINIDAD, 2016, 73 (575) : 198 - 205
  • [10] A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks
    Lancashire, L. J.
    Powe, D. G.
    Reis-Filho, J. S.
    Rakha, E.
    Lemetre, C.
    Weigelt, B.
    Abdel-Fatah, T. M.
    Green, A. R.
    Mukta, R.
    Blamey, R.
    Paish, E. C.
    Rees, R. C.
    Ellis, I. O.
    Ball, G. R.
    BREAST CANCER RESEARCH AND TREATMENT, 2010, 120 (01) : 83 - 93