Using the molecular-dynamics technique, cluster emission for 5 keV Ar bombardment of a Cu (111) surface has been investigated using a many-body (tight binding) potential for the Cu-Cu interaction. The calculations allow us to analyse the basic processes underlying cluster emission. It is found that two distinct processes can be distinguished which lead to cluster emission under energetic ion bombardment. The first process causes the emission of small clusters, which are emitted by a collective motion during the development of the collision cascade within the first picosecond after impact. Thus, emission times of such clusters agree with the emission times of atoms in sputtering. Such a process can be envisioned if, for example, a few layers below the surface, an energetic recoil causes the development of a subcascade. Energy transferred by this event to the surface is strongly directional and can lead to the simultaneous emission of a group of neighbouring surface atoms, which in some cases will remain bounded and form a cluster after emission. Typically, clusters emitted by this mechanism consist of atoms, which are neighbouring in the target and are almost exclusively surface atoms, similar to all sputtered atoms. Emission of large clusters (cluster sizes of 10 or more atoms), as observed experimentally, is a puzzling phenomenon. From our calculations we conclude that the emission of such large clusters does not occur during the collisional phase of sputtering, but happens much later (5-10 ps after ion impact). Emission can occur for spike events, where all the energy of the impinging ion is deposited locally in a small volume near to the surface, and the sputtering yield is 3-5 times the average yield. Such events are rare, but we have found a few cases in our calculations where stable clusters consisting of more than 20 atoms were emitted. Melting of the spike volume occurs, and the high temperatures and pressures produced can cause emission of large fragments during the thermal phase. The composition of such large clusters is quite different from that of small clusters. They consist of atoms from different layers and the constituents are also generally not next-neighbour atoms. This change in origin of the cluster atoms reflects the mixing and diffusion processes occurring in the melted zone before emission. The calculations indicate that hydrodynamical phenomena might play a role in the emission of large fragments. Additional calculations, where the energy was distributed 'thermally' in a three-dimensional volume under the surface for 500 fs, give very similar results, even in such cases where the kinetic phase of the collision-cascade development was absent.