Making Kr+1-free graphs r-partite

被引:3
作者
Balogh, Jozsef [1 ,2 ]
Clemen, Felix Christian [1 ]
Lavrov, Mikhail [1 ]
Lidicky, Bernard [3 ]
Pfender, Florian [4 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Moscow Inst Phys & Technol, Moscow, Russia
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[4] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80217 USA
关键词
05C35; 2020 MSC Codes:;
D O I
10.1017/S0963548320000590
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Erdos-Simonovits stability theorem states that for all epsilon > 0 there exists a > 0 such that if G is a Kr+1-free graph on n vertices with epsilon(G) > ex(n, Kr+1) - alpha n(2), then one can remove epsilon n(2) edges from G to obtain an r-partite graph. Furedi gave a short proof that one can choose alpha = epsilon. We give a bound for the relationship of a and e which is asymptotically sharp as epsilon -> 0.
引用
收藏
页码:609 / 618
页数:10
相关论文
共 18 条
[1]   ON THE NON-(p-1)-PARTITE Kp-FREE GRAPHS [J].
Amin, Kinnari ;
Faudree, Jill ;
Gould, Ronald J. ;
Sidorowicz, Elzbieta .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (01) :9-23
[2]  
Andrasfai B., 1974, Discrete Mathematics, V8, P205, DOI 10.1016/0012-365X(74)90133-2
[3]   THE TYPICAL STRUCTURE OF SPARSE Kr+1-FREE GRAPHS [J].
Balogh, Jozsef ;
Morris, Robert ;
Samotij, Wojciech ;
Warnke, Lutz .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (09) :6439-6485
[4]  
Brouwer A. E., 1981, Afdeling Zuivere Wiskunde Department of Pure Mathematics, V152
[5]  
ERDOS P, 1992, COLLOQ MATH, V60, P239
[6]   HOW TO MAKE A GRAPH BIPARTITE [J].
ERDOS, P ;
FAUDREE, R ;
PACH, J ;
SPENCER, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (01) :86-98
[7]  
Erdos P., 1970, MAT LAPOK, V21, P249
[8]  
ERDOS P, 1966, STUD SCI MATH HUNG, V1, P51
[9]   A proof of the stability of extremal graphs, Simonovits' stability from Szemeredi's regularity [J].
Fueredi, Zoltan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 115 :66-71
[10]  
HANSON D, 1991, ARS COMBINATORIA, V31, P159