Three-dimensional multi-phase simulation of different flow fields with cooling channel in proton exchange membrane fuel cell

被引:39
作者
Zhang, Yong [1 ]
He, Shirong [1 ]
Jiang, Xiaohui [1 ,3 ]
Xiong, Mu [1 ]
Ye, Yuntao [1 ]
Yang, Xi [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Mech Engn, Shanghai 200093, Peoples R China
[2] Shanghai Hydrogen Prop Technol Co Ltd, Shanghai 201805, Peoples R China
[3] Univ Shanghai Sci Technol, Shanghai 200093, Peoples R China
关键词
PEMFC performance; Waveform staggered flow field; Cooling flow field; 3D CFD simulation; Different flow field structures; PARALLEL FLOWFIELD CHANNELS; HIGH-CURRENT DENSITY; NUMERICAL-ANALYSIS; STAGGERED BLOCKAGES; BIPOLAR PLATE; 2-PHASE FLOW; ASPECT RATIO; IN-LINE; PERFORMANCE; PEMFC;
D O I
10.1016/j.ijhydene.2022.08.286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The overall performance of PEMFC (proton exchange membrane fuel cell) is affected by the flow field structure, especially the cathode flow field design can effectively solve the uneven distribution of gas concentration in the traditional flow channel and the cathode flooding phenomenon. In order to solve the above problems, a PEMFC single cell model with waveform staggered flow field of cooling flow field and small cathode channel was established in this study. Three-dimensional (3D) multi-phase CFD (computational fluid dynamics) simulation method is used to compare with gas concentration, liquid water distribution, pressure drop, and net power density of three different cases, and the influence of different cooling velocity on the temperature of cooling flow field is considered. The results show that the overall performance of the proposed flow field is the best, in which the maximum current density is 1.391 A,cm(-2) and increases by 14.9%. The cathode and anode waveform staggered flow field makes the proton exchange membrane (PEM) water distribution more uniform, at the same time, the small size of the cathode flow channel facilitates the discharge of heat, and the convective heat transfer effect is enhanced. The electrochemical reaction rate is fast, which accelerates the temperature reduction in the fuel cell under the action of the cooling flow field, and the temperature uniformity of the cooling flow field is better. In addition, net power density is improved by 39.7%, and the output performance is significantly improved. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:37929 / 37944
页数:16
相关论文
共 68 条
[1]   Enhanced cross-flow split serpentine flow field design for square cross-sectional polymer electrolyte membrane fuel cell [J].
Abdulla, Sheikh ;
Patnaikuni, Venkata Suresh .
ELECTROCHIMICA ACTA, 2021, 391
[2]   An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor [J].
Afshari, E. ;
Mosharaf-Dehkordi, M. ;
Rajabian, H. .
ENERGY, 2017, 118 :705-715
[3]   Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells [J].
Afshari, Ebrahim ;
Ziaei-Rad, Masoud ;
Dehkordi, Mehdi Mosharaf .
JOURNAL OF THE ENERGY INSTITUTE, 2017, 90 (05) :752-763
[4]   A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells [J].
Anderson, Ryan ;
Zhang, Lifeng ;
Ding, Yulong ;
Blanco, Mauricio ;
Bi, Xiaotao ;
Wilkinson, David P. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4531-4553
[5]   Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields [J].
Ashrafi, Moosa ;
Kanani, Homayoon ;
Shams, Mehrzad .
ENERGY, 2018, 147 :317-328
[6]   The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels [J].
Ashrafi, Moosa ;
Shams, Mehrzad .
APPLIED ENERGY, 2017, 208 :1083-1096
[7]  
Atyabi SA, 2021, ENERGY, P234
[8]   Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side [J].
Atyabi, Seyed Ali ;
Afshari, Ebrahim .
JOURNAL OF CLEANER PRODUCTION, 2019, 214 :738-748
[9]   A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields [J].
Atyabi, Seyed Ali ;
Afshari, Ebrahim .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (03) :1823-1833
[10]   Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels [J].
Carton, J. G. ;
Lawlor, V. ;
Olabi, A. G. ;
Hochenauer, C. ;
Zauner, G. .
ENERGY, 2012, 39 (01) :63-73