Investigation on thermal reliability and corrosion characteristics of glutaric acid as an organic phase change material for solar thermal energy storage applications

被引:46
作者
Dheep, G. Raam [1 ]
Sreekumar, A. [1 ]
机构
[1] Pondicherry Univ, Ctr Green Energy Technol, Solar Thermal Energy Lab, Pondicheny 605014, India
关键词
Latent heat storage; Phase change materials; Solar thermal energy; Thermal reliability; Corrosion compatibility; LATENT-HEAT STORAGE; CHANGE MATERIALS PCM; TEMPERATURE-RANGE; PERFORMANCE ENHANCEMENT; STABILITY; METAL; COMPATIBILITY; TESTS; SYSTEMS; CYCLES;
D O I
10.1016/j.applthermaleng.2017.10.133
中图分类号
O414.1 [热力学];
学科分类号
摘要
The successful implementation of the latent heat solar thermal energy storage system depends on the long term thermal stability and corrosion characteristics of phase change materials (PCM). Glutaric acid (GA) is an organic PCM with phase transition temperature 94.97-99.20 degrees C and latent heat of fusion 184.8 Jig. Thermo-physical properties and corrosive nature of glutaric acid is investigated using accelerated thermal cycle method under controlled conditions. The study was conducted upon 2000 thermal cycles to explore the feasibility of material for long term usage in solar thermal applications. Relative percentage difference (RPD%), gravimetric analysis and scanning electron microscope (SEM) techniques were used to evaluate the thermal stability and compatibility of glutaric acid. The test results reveal that glutaric acid tends to be a potential PCM for solar thermal energy storage applications due to its prolonged thermal stability and less corrosive nature on containment materials. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1189 / 1196
页数:8
相关论文
共 28 条
[1]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[2]  
Cabeza LF, 2005, MATER CORROS, V56, P33, DOI 10.1002/maco.2004038060
[3]   Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 48 to 58°C temperature range [J].
Cabeza, LF ;
Roca, J ;
Nogués, M ;
Mehling, H ;
Hiebler, S .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2002, 53 (12) :902-907
[4]  
Cabeza LF, 2001, MATER CORROS, V52, P140, DOI 10.1002/1521-4176(200102)52:2<140::AID-MACO140>3.0.CO
[5]  
2-R
[6]   High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques [J].
Cardenas, Bruno ;
Leon, Noel .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 27 :724-737
[7]   Compatibility of plastic with phase change materials (PCM) [J].
Castellon, C. ;
Martorell, I. ;
Cabeza, L. F. ;
Ines Fernandez, Ana ;
Manich, A. M. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (09) :765-771
[8]   Thermal energy storage for low and medium temperature applications using phase change materials - A review [J].
da Cunha, Jose Pereira ;
Eames, Philip .
APPLIED ENERGY, 2016, 177 :227-238
[9]   Influence of accelerated thermal charging and discharging cycles on thermo-physical properties of organic phase change materials for solar thermal energy storage applications [J].
Dheep, G. Raam ;
Sreekumar, A. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 105 :13-19
[10]   Influence of nanomaterials on properties of latent heat solar thermal energy storage materials - A review [J].
Dheep, G. Raam ;
Sreekumar, A. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 83 :133-148