Neuropsychological Testing Predicts Cerebrospinal Fluid Amyloid-β in Mild Cognitive Impairment

被引:23
作者
Kandel, Benjamin M. [1 ,2 ]
Avants, Brian B. [3 ,4 ]
Gee, James C. [3 ,4 ]
Arnold, Steven E. [5 ]
Wolk, David A. [6 ]
机构
[1] Univ Penn, Penn Image Comp & Sci Lab, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[3] Univ Penn, Penn Image Comp & Sci Lab, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Radiol, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Dept Psychiat, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
Alzheimer's disease; magnetic resonance imaging; mild cognitive impairment; positron emission tomography; ALZHEIMERS ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; CSF BIOMARKERS; DISEASE; DEMENTIA; PROGRESSION; MEMORY; MRI; PET;
D O I
10.3233/JAD-142943
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Psychometric tests predict conversion of mild cognitive impairment (MCI) to probable Alzheimer's disease (AD). Because the definition of clinical AD relies on those same psychometric tests, the ability of these tests to identify underlying AD pathology remains unclear. Objective: To determine the degree to which psychometric testing predicts molecular evidence of AD amyloid pathology, as indicated by cerebrospinal fluid (CSF) amyloid-beta (A beta)(1-42), in patients with MCI, as compared to neuroimaging biomarkers. Methods: We identified 408 MCI subjects with CSF A beta levels, psychometric test data, FDG-PET scans, and acceptable volumetric MR scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We used psychometric tests and imaging biomarkers in univariate and multivariate models to predict A beta status. Results: The 30-min delayed recall score of the Rey Auditory Verbal Learning Test was the best predictor of A beta status among the psychometric tests, achieving an AUC of 0.67 +/- 0.02 and odds ratio of 2.5 +/- 0.4. FDG-PET was the best imaging-based biomarker (AUC 0.67 +/- 0.03, OR 3.2 +/- 1.2), followed by hippocampal volume (AUC 0.64 +/- 0.02, OR 2.4 +/- 0.3). A multivariate analysis based on the psychometric tests improved on the univariate predictors, achieving an AUC of 0.68 +/- 0.03 (OR 3.38 +/- 1.2). Adding imaging biomarkers to the multivariate analysis did not improve the AUC. Conclusion: Psychometric tests perform as well as imaging biomarkers to predict presence of molecular markers of AD pathology in MCI patients and should be considered in the determination of the likelihood that MCI is due to AD.
引用
收藏
页码:901 / 912
页数:12
相关论文
共 41 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]  
[Anonymous], 1964, Lexamen Clinique en Psychologie The Clinical Psychological Examination
[3]   Sparse canonical correlation analysis relates network-level atrophy to multivariate cognitive measures in a neurodegenerative population [J].
Avants, Brian B. ;
Libon, David J. ;
Rascovsky, Katya ;
Boller, Ashley ;
McMillan, Corey T. ;
Massimo, Lauren ;
Coslett, H. Branch ;
Chatterjee, Anjan ;
Gross, Rachel G. ;
Grossman, Murray .
NEUROIMAGE, 2014, 84 :698-711
[4]   Cerebrospinal Fluid Levels of β-Amyloid 1-42, but Not of Tau, Are Fully Changed Already 5 to 10 Years Before the Onset of Alzheimer Dementia [J].
Buchhave, Peder ;
Minthon, Lennart ;
Zetterberg, Henrik ;
Wallin, Asa K. ;
Blennow, Kaj ;
Hansson, Oskar .
ARCHIVES OF GENERAL PSYCHIATRY, 2012, 69 (01) :98-106
[5]   EPISODIC AND SEMANTIC MEMORY - A COMPARISON OF AMNESIC AND DEMENTED PATIENTS [J].
BUTTERS, N ;
GRANHOLM, E ;
SALMON, DP ;
GRANT, I ;
WOLFE, J .
JOURNAL OF CLINICAL AND EXPERIMENTAL NEUROPSYCHOLOGY, 1987, 9 (05) :479-497
[6]   Mild cognitive impairment -: Can FDG-PET predict who is to rapidly convert to Alzheimer's disease? [J].
Chételat, G ;
Desgranges, B ;
de la Sayette, V ;
Viader, F ;
Eustache, F ;
Baron, JC .
NEUROLOGY, 2003, 60 (08) :1374-1377
[7]   Use of Florbetapir-PET for Imaging β-Amyloid Pathology [J].
Clark, Christopher M. ;
Schneider, Julie A. ;
Bedell, Barry J. ;
Beach, Thomas G. ;
Bilker, Warren B. ;
Mintun, Mark A. ;
Pontecorvo, Michael J. ;
Hefti, Franz ;
Carpenter, Alan P. ;
Flitter, Matthew L. ;
Krautkramer, Michael J. ;
Kung, Hank F. ;
Coleman, R. Edward ;
Doraiswamy, P. Murali ;
Fleisher, Adam S. ;
Sabbagh, Marwan N. ;
Sadowsky, Carl H. ;
Reiman, P. Eric M. ;
Zehntner, Simone P. ;
Skovronsky, Daniel M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (03) :275-283
[8]   Cortical surface-based analysis - I. Segmentation and surface reconstruction [J].
Dale, AM ;
Fischl, B ;
Sereno, MI .
NEUROIMAGE, 1999, 9 (02) :179-194
[9]   Registration based cortical thickness measurement [J].
Das, Sandhitsu R. ;
Avants, Brian B. ;
Grossman, Murray ;
Gee, James C. .
NEUROIMAGE, 2009, 45 (03) :867-879
[10]   Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification [J].
Davatzikos, Christos ;
Bhatt, Priyanka ;
Shaw, Leslie M. ;
Batmanghelich, Kayhan N. ;
Trojanowski, John Q. .
NEUROBIOLOGY OF AGING, 2011, 32 (12) :2322.e19-2322.e27