Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization

被引:10
作者
Kyburg, Felix E. [1 ]
Rojas, Sergio [2 ]
Calo, Victor M. [3 ]
机构
[1] Inst Tecnol Buenos Aires, Ctr Mecan Computac, Buenos Aires, DF, Argentina
[2] Pontificia Univ Catolica Valparaiso, Inst Matemat, Valparaiso, Chile
[3] Curtin Univ, Sch Elect Engn Comp & Math Sci, Fac Sci & Engn, Perth, WA, Australia
基金
欧盟地平线“2020”;
关键词
adaptive mesh refinement; incompressibility constraint; inf-sup stability; residual minimization; stabilized finite elements; Stokes flow; COMPUTATIONAL FLUID-DYNAMICS; STOKES PROBLEM; FORMULATION;
D O I
10.1002/nme.6912
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We model incompressible Stokes flows with an adaptive stabilized finite element method, which solves a discretely stable saddle-point problem to approximate the velocity-pressure pair. Additionally, this saddle-point problem delivers a robust error estimator to guide mesh adaptivity. We analyze the accuracy of different discrete velocity-pressure pairs of continuous finite element spaces, which do not necessarily satisfy the discrete inf-sup condition. We validate the framework's performance with numerical examples.
引用
收藏
页码:1717 / 1735
页数:19
相关论文
共 42 条
[1]  
Alnaes M, 2015, Arch Numer Softw, V3, DOI DOI 10.11588/ANS.2015.100.20553
[2]  
Arnold D. N., 1984, Calcolo, V21, P337, DOI 10.1007/BF02576171
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]  
Bank RE, 1983, SOME REFINEMENT ALGO
[6]  
Braack M, 2004, NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, P159
[7]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[8]   IsoGeometric Analysis: Stable elements for the 2D Stokes equation [J].
Buffa, A. ;
de Falco, C. ;
Sangalli, G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) :1407-1422
[9]   An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms [J].
Calo, Victor M. ;
Ern, Alexandre ;
Muga, Ignacio ;
Rojas, Sergio .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363
[10]   Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate [J].
Chen, Yanqing ;
Davis, Timothy A. ;
Hager, William W. ;
Rajamanickam, Sivasankaran .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03)