Experimental Study of High-Strength Steel Fiber Lightweight Aggregate Concrete on Mechanical Properties and Toughness Index

被引:33
|
作者
Ye, Yanxia [1 ]
Liu, Jilei [1 ]
Zhang, Zhiyin [2 ]
Wang, Zongbin [1 ]
Peng, Qiongwu [1 ]
机构
[1] Changan Univ, Xian 710061, Peoples R China
[2] Chengdu Benchmark Fangzhong Architectural Design, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
SILICA FUME; PERFORMANCE; PUMICE;
D O I
10.1155/2020/5915034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, three different kinds of steel fibers, being micro (M), end-hooked (H), and corrugated (C), commonly used in engineering applications, are added to high-strength lightweight aggregate concrete (HLAC) to study the effects of steel fiber and volume content ratio of fiber on the compressive, splitting tensile, and flexural strength of HLAC. The range of steel fiber volume content fraction studied is 0.5% to 2.0%. The research shows that different types of steel fiber have different effects on the mechanical properties and toughness of HLAC. M steel fibers have the best reinforcing performance on the mechanical properties. The study also shows that the toughness of M steel fibers is the best with the same fiber content. The toughening effect of H and C steel fibers can only reach 2/3 and 1/2 of M steel fibers, respectively. At the end of this paper, the unified strength formula and toughness index of these three kinds of high-strength steel fiber lightweight aggregate concrete (HSLAC) with different fiber contents are given to provide a reference for engineering practice and design.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effect of Steel Fiber on Structural Characteristics of High-Strength Concrete
    Sumathi, A.
    Mohan, K. Saravana Raja
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2019, 43 (Suppl 1) : 117 - 130
  • [32] Flexural toughness and evaluation method of steel fiber reinforced self-compacting lightweight aggregate concrete
    Li, Jingjun
    Chen, Jian
    Wan, Chaojun
    Niu, Jiangang
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 277
  • [33] Mechanical Properties and Microstructure of Cellulose Fiber- and Synthetic Fiber-Reinforced High-Strength Concrete
    Sangkeaw, Panisa
    Thongchom, Chanachai
    Keawsawasvong, Suraparb
    Prasittisopin, Lapyote
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (03) : 2149 - 2168
  • [34] THE EFFECTS OF ADDITIVES TO LIGHTWEIGHT AGGREGATE ON THE MECHANICAL PROPERTIES OF STRUCTURAL LIGHTWEIGHT AGGREGATE CONCRETE
    Khoshvatan, Mehdi
    Pouraminia, Majid
    CIVIL AND ENVIRONMENTAL ENGINEERING REPORTS, 2021, 31 (01) : 139 - 160
  • [35] A comparative study on the mechanical properties of ultra early strength steel fiber concrete
    Lai, Yi-Chun
    Lee, Ming -Hui
    Tai, Yuh-Shiou
    ADVANCES IN CONCRETE CONSTRUCTION, 2023, 16 (05) : 255 - 267
  • [36] Preparation and properties of high-strength lightweight aggregate ceramsite from nepheline tailings
    Jiang, Jun
    Chen, Song
    Jin, Chao
    Wang, Gui
    Liu, Tie
    Xu, Tianyuan
    Lei, Luo
    Dang, Wenjing
    Yang, Xu
    Ding, Tao
    Li, Zhengyin
    Lu, Zhongyuan
    Li, Jun
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 368
  • [37] Compression Specific Toughness of Normal Strength Steel Fiber Reinforced Concrete (NSSFRC) and High Strength Steel Fiber Reinforced Concrete (HSSFRC)
    Marar, Khaled
    Eren, Ozgur
    Yitmen, Ibrahim
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2011, 14 (02): : 239 - 247
  • [38] Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag
    Yang, Jun-Mo
    Yoo, Doo-Yeol
    Kim, You-Chan
    Yoon, Young-Soo
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2017, 11 (02) : 391 - 401
  • [39] Experimental Study Effect of Silica Fume and Hybrid Fiber on Mechanical Properties Lightweight Concrete
    Mousavinejad, Seyed Hosein Ghasemzadeh
    Sara, Yaser Ghorbani Shemshad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2019, 43 (02) : 263 - 271
  • [40] Effect of Graphene Oxide on the Mechanical Properties and Durability of High-Strength Lightweight Concrete Containing Shale Ceramsite
    Hong, Xiaojiang
    Lee, Jin Chai
    Ng, Jing Lin
    Md Yusof, Zeety
    He, Qian
    Li, Qiansha
    MATERIALS, 2023, 16 (07)