3D magnetotelluric modeling using high-order tetrahedral Nedelec elements on massively parallel computing platforms

被引:25
作者
Castillo-Reyes, Octavio [1 ]
Modesto, David [1 ]
Queralt, Pilar [2 ]
Marcuello, Alex [2 ]
Ledo, Juanjo [2 ]
Amor-Martin, Adrian [3 ]
de la Puente, Josep [1 ]
Emilio Garcia-Castillo, Luis [3 ]
机构
[1] Barcelona Supercomp Ctr BSC, C Jordi Girona 29, Barcelona 08034, Spain
[2] Univ Barcelona, Inst Geomodels, Dept Dinam Terra & Ocea, C Martii Franques S-N, Barcelona 08028, Spain
[3] Univ Carlos III Madrid, Dept Signal Theory & Commun, C Univ 30, Madrid 3028903, Spain
基金
欧盟地平线“2020”;
关键词
Magnetotelluric method; Geophysical electromagnetics; Numerical solutions; High-order edge finite element; High-performance computing; FINITE-VOLUME; INVERSION CODE; CSEM; SIMULATION;
D O I
10.1016/j.cageo.2021.105030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[2]   Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix [J].
Avdeeva, A. ;
Moorkamp, M. ;
Avdeev, D. ;
Jegen, M. ;
Miensopust, M. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 202 (01) :464-481
[3]  
Balay S., 2016, PETSC Web page
[4]   Numerical Modelling in Geo-Electromagnetics: Advances and Challenges [J].
Boerner, Ralph-Uwe .
SURVEYS IN GEOPHYSICS, 2010, 31 (02) :225-245
[5]  
Bondeson A., 2012, COMPUTATIONAL ELECTR, P224
[6]   New geoelectrical characterisation of a continental collision zone in the West-Central Pyrenees: Constraints from long period and broadband magnetotellurics [J].
Campanya, Joan ;
Ledo, Juanjo ;
Queralt, Pilar ;
Marcuello, Alex ;
Liesa, Montserrat ;
Munoz, Josep A. .
EARTH AND PLANETARY SCIENCE LETTERS, 2012, 333 :112-121
[7]   Parallel 3-D marine controlled-source electromagnetic modelling using high-order tetrahedral Nedelec elements [J].
Castillo-Reyes, Octavio ;
de la Puente, Josep ;
Emilio Garcia-Castillo, Luis ;
Maria Cela, Jose .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 219 (01) :39-65
[8]   PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements [J].
Castillo-Reyes, Octavio ;
de la Puente, Josep ;
Maria Cela, Jose .
COMPUTERS & GEOSCIENCES, 2018, 119 :123-136
[9]  
Chave A.D., 2012, MAGNETOTELLURIC METH, P20
[10]  
Colton D, 2013, CLASS APPL MATH