DNA Codes Over the Ring F4[U]/⟨U3⟩

被引:5
作者
Liu, Jie [1 ]
Liu, Hualu [2 ]
机构
[1] Hubei Polytech Univ, Sch Med, Huangshi 435003, Hubei, Peoples R China
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
关键词
DNA; Linear codes; Computed tomography; Licenses; Hamming weight; Hamming distance; DNA code; reversible code; chain ring; Watson-Crick complement; CYCLIC CODES; CONSTRUCTION; DISTANCE;
D O I
10.1109/ACCESS.2020.2989203
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop the method for constructing DNA codes of odd length over the finite chain ring R D F4[u]=hu3 i, which plays an important role in genetics, bioengineering and DNA computing. By using a Gray map n from R to F4, we give a one-to-one correspondence between 64 DNA codons of the alphabet fA; T;G;Cg3 and the 64 elements of the chain ring R. We also establish a map 2 from Rn to fA; T;G;Cg3n. Then we provide a necessary and sufficient condition for cyclic codes of odd length over the chain ring R to be reversible. Finally, when C is a reversible cyclic code over R, we derive a necessary and sufficient condition for 2(C) to be a DNA code.
引用
收藏
页码:77528 / 77534
页数:7
相关论文
共 26 条
[1]   On the synthesis of DNA error correcting codes [J].
Ashlock, Daniel ;
Houghten, Sheridan K. ;
Brown, Joseph Alexander ;
Orth, John .
BIOSYSTEMS, 2012, 110 (01) :1-8
[2]  
Bayram A, 2016, DESIGN CODE CRYPTOGR, V80, P379, DOI 10.1007/s10623-015-0100-8
[3]  
Bennenni N., 2015, ARXIV150506263
[4]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[5]   On DNA codes [J].
D'yachkov A.G. ;
Vilenkin P.A. ;
Ismagilov I.K. ;
Sarbaev R.S. ;
Macula A. ;
Torney D. ;
White S. .
Problems of Information Transmission, 2005, 41 (4) :349-367
[6]   A Coding Theoretic Model for Error-detecting in DNA Sequences [J].
Debata, Prajna Paramita ;
Mishra, Debahuti ;
Shaw, Kailash ;
Mishra, Sashikala .
INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 :1773-1777
[7]   Construction of cyclic DNA codes over the ring Z4[u]/⟨u2-1⟩ based on the deletion distance [J].
Dinh, Hai Q. ;
Singh, Abhay Kumar ;
Pattanayak, Sukhamoy ;
Sriboonchitta, Songsak .
THEORETICAL COMPUTER SCIENCE, 2019, 773 :27-42
[8]  
Dinh HQ, 2018, DESIGN CODE CRYPTOGR, V86, P1451, DOI 10.1007/s10623-017-0405-x
[9]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[10]  
Dinu LP, 2006, FUND INFORM, V73, P361