Unsupervised Weight Parameter Estimation for Exponential Mixture Distribution based on Symmetric Kullback-Leibler Divergence

被引:0
作者
Uchida, Masato [1 ]
机构
[1] Chiba Inst Technol, Fac Engn, Narashino, Chiba 2750016, Japan
来源
2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS) | 2014年
关键词
ensemble learning; parameter estimation; exponential mixture model; symmetric Kullback-Leibler divergence;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
When there are multiple component predictors, it is promising to integrate them into one predictor for advanced reasoning. If each component predictor is given as a stochastic model in the form of probability distribution, an exponential mixture of the component probability distributions provides a good way to integrate them. However, weight parameters used in the exponential mixture model are difficult to estimate if there is no data for performance evaluation. As a suboptimal way to solve this problem, weight parameters may be estimated so that the exponential mixture model should be a balance point that is defined as an equilibrium point with respect to the distance from/to all component probability distributions. In this paper, we propose a weight parameter estimation method that represents this concept using a symmetric Kullback-Leibler divergence and discuss the features of this method.
引用
收藏
页码:1126 / 1129
页数:4
相关论文
共 10 条
[1]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[2]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
[3]  
Domingo C., 2000, COLT, P180
[4]   A decision-theoretic generalization of on-line learning and an application to boosting [J].
Freund, Y ;
Schapire, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :119-139
[5]   Additive logistic regression: A statistical view of boosting - Rejoinder [J].
Friedman, J ;
Hastie, T ;
Tibshirani, R .
ANNALS OF STATISTICS, 2000, 28 (02) :400-407
[6]  
SCHAPIRE RE, 1990, MACH LEARN, V5, P197, DOI 10.1023/A:1022648800760
[7]  
Uchida M., 2003, IEICE T INF SYST D2, VJ86-D-II, P1131
[8]  
Uchida M., 2011, J. Mathe. Model. Algorithms, V10, P307
[9]  
Uchida M., 2001, IEICE T INF SYST D2, VJ84-D-II, P1537
[10]  
Ueda N, 1996, IEEE IJCNN, P90, DOI 10.1109/ICNN.1996.548872