New CRISPR-Derived microRNA Sensing Mechanism Based on Cas12a Self-Powered and Rolling Circle Transcription-Unleashed Real-Time crRNA Recruiting

被引:111
作者
Wang, Gaoting [1 ,2 ]
Tian, Weimin [1 ,2 ]
Liu, Xiaoling [1 ,2 ]
Ren, Wei [1 ,2 ]
Liu, Chenghui [1 ,2 ]
机构
[1] Shaanxi Normal Univ, Key Lab Appl Surface & Colloid Chem, Minist Educ, Xian 710119, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Sch Chem & Chem Engn, Key Lab Analyt Chem Life Sci Shaanxi Prov, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
RNA-GUIDED ENDONUCLEASE; CATALYTIC RNAS; DNA; AMPLIFICATION; DIAGNOSTICS; POLYMERASE; GENERATION; ASSAY; CPF1;
D O I
10.1021/acs.analchem.0c00680
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Current CRISPR-Cas-based nucleic acid sensing methods relying on the preassembled Cas-crRNA complexes are generally limited to the detection of protospacer-adjacent motif (PAM)-containing sequences, and nonspecific backgrounds are inevitable. Herein, we propose a new CRISPR-derived microRNA sensing mechanism based on rolling circle transcription (RCT)-unleashed self-recruiting of crRNA by Cas12a (Cas12a-SCR). In Cas12a-SCR, target microRNA can specifically trigger RCT to produce a long single- strand RNA with numerous pre-crRNA repeats, which can be trimmed and recruited by Cas12a actively. This new target-initiated, real-time producing, trimming, and self-assembling manner of Cas12a-crRNA remarkably suppresses the nonspecific background and relieves the stringent requirement of PAM site in the target sequence. Thus, the universality of the Cas12a-SCR toward different nucleic acid sequences is greatly expanded.
引用
收藏
页码:6702 / 6708
页数:7
相关论文
共 55 条
[1]   CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics [J].
Bruch, Richard ;
Baaske, Julia ;
Chatelle, Claire ;
Meirich, Mailin ;
Madlener, Sibylle ;
Weber, Wilfried ;
Dincer, Can ;
Urban, Gerald Anton .
ADVANCED MATERIALS, 2019, 31 (51)
[2]   CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].
Chen, Janice S. ;
Ma, Enbo ;
Harrington, Lucas B. ;
Da Costa, Maria ;
Tian, Xinran ;
Palefsky, Joel M. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 360 (6387) :436-+
[3]   CRISPR/Cas13a Signal Amplification Linked Immunosorbent Assay for Femtomolar Protein Detection [J].
Chen, Qian ;
Tian, Tian ;
Xiong, Erhu ;
Wang, Po ;
Zhou, Xiaoming .
ANALYTICAL CHEMISTRY, 2020, 92 (01) :573-577
[4]   N1-Methyladenosine detection with CRISPR-Cas13a/C2c2 [J].
Chen, Yi ;
Yang, Shixi ;
Peng, Shuang ;
Li, Wei ;
Wu, Fan ;
Yao, Qian ;
Wang, Fang ;
Weng, Xiaocheng ;
Zhou, Xiang .
CHEMICAL SCIENCE, 2019, 10 (10) :2975-2979
[5]   Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor [J].
Dai, Yifan ;
Somoza, Rodrigo A. ;
Wang, Liu ;
Welter, Jean F. ;
Li, Yan ;
Caplan, Arnold I. ;
Liu, Chung Chiun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (48) :17399-17405
[6]   Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles [J].
Daubendiek, SL ;
Kool, ET .
NATURE BIOTECHNOLOGY, 1997, 15 (03) :273-277
[7]   Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification [J].
Deng, Ruijie ;
Zhang, Kaixiang ;
Sun, Yupeng ;
Ren, Xiaojun ;
Li, Jinghong .
CHEMICAL SCIENCE, 2017, 8 (05) :3668-3675
[8]   Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes [J].
Diegelman, AM ;
Kool, ET .
NUCLEIC ACIDS RESEARCH, 1998, 26 (13) :3235-3241
[9]   Programmable CRISPR-responsive smart materials [J].
English, Max A. ;
Soenksen, Luis R. ;
Gayet, Raphael V. ;
de Puig, Helena ;
Angenent-Mari, Nicolaas M. ;
Mao, Angelo S. ;
Nguyen, Peter Q. ;
Collins, James J. .
SCIENCE, 2019, 365 (6455) :780-+
[10]  
Fix Lindsey N., 2010, Cancer Genomics & Proteomics, V7, P261