Application of Magnetic Resonance Techniques to the In Situ Characterization of Li-Ion Batteries: A Review

被引:20
|
作者
Krachkovskiy, Sergey [1 ]
Trudeau, Michel L. [1 ]
Zaghib, Karim [1 ]
机构
[1] Hydoquebec, Ctr Excellence Transportat Electrificat & Energy, 1806 Bd Lionel Boulet, Varennes, PQ J3X 1S1, Canada
关键词
NMR; MRI; Li-ion batteries; electrolyte; anode; cathode; SOLID-STATE NMR; LITHIUM-ION; TRANSPORT PROPERTIES; ELECTROCHEMICAL INTERCALATION; DIFFUSION MEASUREMENTS; CONCENTRATION PROFILES; TRANSFERENCE NUMBERS; ELECTRODE MATERIALS; MASS-TRANSPORT; SPIN-ECHO;
D O I
10.3390/ma13071694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In situ magnetic resonance (MR) techniques, such as nuclear MR and MR imaging, have recently gained significant attention in the battery community because of their ability to provide real-time quantitative information regarding material chemistry, ion distribution, mass transport, and microstructure formation inside an operating electrochemical cell. MR techniques are non-invasive and non-destructive, and they can be applied to both liquid and solid (crystalline, disordered, or amorphous) samples. Additionally, MR equipment is available at most universities and research and development centers, making MR techniques easily accessible for scientists worldwide. In this review, we will discuss recent research results in the field of in situ MR for the characterization of Li-ion batteries with a particular focus on experimental setups, such as pulse sequence programming and cell design, for overcoming the complications associated with the heterogeneous nature of energy storage devices. A comprehensive approach combining proper hardware and software will allow researchers to collect reliable high-quality data meeting industrial standards.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Electrolyte Design for Fast-Charging Li-Ion Batteries
    Logan, E. R.
    Dahn, J. R.
    TRENDS IN CHEMISTRY, 2020, 2 (04): : 354 - 366
  • [42] MnO Conversion in Li-Ion Batteries: In Situ Studies and the Role of Mesostructuring
    Butala, Megan M.
    Danks, Katherine R.
    Lumley, Margaret A.
    Zhou, Shiliang
    Melot, Brent C.
    Seshadri, Ram
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (10) : 6496 - 6503
  • [43] Adaptive thermal modeling of Li-ion batteries
    Rad, M. Shadman
    Danilov, D. L.
    Baghalha, M.
    Kazemeini, M.
    Notten, P. H. L.
    ELECTROCHIMICA ACTA, 2013, 102 : 183 - 195
  • [44] Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
    Ma, Delong
    Cao, Zhanyi
    Hu, Anming
    NANO-MICRO LETTERS, 2014, 6 (04) : 347 - 358
  • [45] A Comparative Review of Models for All-Solid-State Li-Ion Batteries
    Yildiz, Erkin
    Serpelloni, Mattia
    Salvadori, Alberto
    Cabras, Luigi
    BATTERIES-BASEL, 2024, 10 (05):
  • [46] Critical Review of the Use of Reference Electrodes in Li-Ion Batteries: A Diagnostic Perspective
    Raccichini, Rinaldo
    Amores, Marco
    Hinds, Gareth
    BATTERIES-BASEL, 2019, 5 (01):
  • [47] Synthesis and characterization of porous maghemite as an anode for Li-ion batteries
    Golmohammad, M.
    Golestanifard, F.
    Mirhabibi, A.
    Kelder, E. M.
    CERAMICS INTERNATIONAL, 2016, 42 (03) : 4370 - 4376
  • [48] A computational study on the application of AIN nanotubes in Li-ion batteries
    Anaraki-Ardakani, Hossein
    PHYSICS LETTERS A, 2017, 381 (11) : 1041 - 1046
  • [49] Si-Based Anode Materials for Li-Ion Batteries:A Mini Review
    Delong Ma
    Zhanyi Cao
    Anming Hu
    Nano-Micro Letters, 2014, 6 (04) : 347 - 358
  • [50] Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
    Delong Ma
    Zhanyi Cao
    Anming Hu
    Nano-Micro Letters, 2014, 6 : 347 - 358