Application of Magnetic Resonance Techniques to the In Situ Characterization of Li-Ion Batteries: A Review

被引:20
|
作者
Krachkovskiy, Sergey [1 ]
Trudeau, Michel L. [1 ]
Zaghib, Karim [1 ]
机构
[1] Hydoquebec, Ctr Excellence Transportat Electrificat & Energy, 1806 Bd Lionel Boulet, Varennes, PQ J3X 1S1, Canada
关键词
NMR; MRI; Li-ion batteries; electrolyte; anode; cathode; SOLID-STATE NMR; LITHIUM-ION; TRANSPORT PROPERTIES; ELECTROCHEMICAL INTERCALATION; DIFFUSION MEASUREMENTS; CONCENTRATION PROFILES; TRANSFERENCE NUMBERS; ELECTRODE MATERIALS; MASS-TRANSPORT; SPIN-ECHO;
D O I
10.3390/ma13071694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In situ magnetic resonance (MR) techniques, such as nuclear MR and MR imaging, have recently gained significant attention in the battery community because of their ability to provide real-time quantitative information regarding material chemistry, ion distribution, mass transport, and microstructure formation inside an operating electrochemical cell. MR techniques are non-invasive and non-destructive, and they can be applied to both liquid and solid (crystalline, disordered, or amorphous) samples. Additionally, MR equipment is available at most universities and research and development centers, making MR techniques easily accessible for scientists worldwide. In this review, we will discuss recent research results in the field of in situ MR for the characterization of Li-ion batteries with a particular focus on experimental setups, such as pulse sequence programming and cell design, for overcoming the complications associated with the heterogeneous nature of energy storage devices. A comprehensive approach combining proper hardware and software will allow researchers to collect reliable high-quality data meeting industrial standards.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Design of electrolyte solutions for Li and Li-ion batteries: a review
    Aurbach, D
    Talyosef, Y
    Markovsky, B
    Markevich, E
    Zinigrad, E
    Asraf, L
    Gnanaraj, JS
    Kim, HJ
    ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 247 - 254
  • [22] Operando electron magnetic measurements of Li-ion batteries
    Gershinsky, Gregory
    Bar, Elad
    Monconduit, Laure
    Zitoun, David
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) : 2012 - 2016
  • [23] Review on The Charging Techniques of a Li-ion Battery
    Ayoub, Elie
    Karami, Nabil
    2015 THIRD INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2015, : 50 - 55
  • [24] Red Mud and Li-Ion Batteries: A Magnetic Connection
    Suryawanshi, Anil
    Aravindan, Vanchiappan
    Madhavi, Srinivasan
    Ogale, Satishchandra
    CHEMSUSCHEM, 2016, 9 (16) : 2193 - 2200
  • [25] In situ Raman analyses of electrode materials for Li-ion batteries
    Julien, Christian M.
    Mauger, Alain
    AIMS MATERIALS SCIENCE, 2018, 5 (04) : 650 - 698
  • [26] In-situ neutron scattering studies of Li-ion batteries
    Senyshyn, Anatoliy
    Muehlbauer, Martin J.
    Dolotko, Oleksandr
    Ehrenberg, Helmut
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S67 - S67
  • [28] The Characterization of Li-ion Batteries and the Importance of the Recycling Processes
    Guimaraes, Lucas Fonseca
    Botelho Junior, Amilton Barbosa
    Espinosa, Denise Crocce Romano
    JOM, 2023, 75 (09) : 3622 - 3631
  • [29] FABRICATION AND CHARACTERIZATION OF NANOSTRUCTURED CATHODES FOR LI-ION BATTERIES
    Jibhakate, Piyush D.
    Nelson, George J.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6A, 2017,
  • [30] APPLICATION OF ATOMIC LAYER DEPOSITION IN LI-ION BATTERIES
    Maximov, Maxim
    Novikov, Pavel
    Rymyantsev, Aleksander
    Koshtyal, Yury
    Nazarov, Denis
    Silin, Aleksey
    Popovich, Anatoly
    8TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2016), 2017, : 296 - 302