Study of Parameter Sensitivity on Bat Algorithm

被引:3
作者
Carvalho, Iago Augusto [1 ]
da Rocha, Daniel G. [2 ]
Rocha Silva, Joao Gabriel [3 ]
Vieira, Vinicus da Fonseca [2 ]
Xavier, Carolina Ribeiro [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[2] Univ Fed Sao Joao Rei, Dept Comp Sci, Sao Joao Del Rei, Brazil
[3] Univ Fed Juiz Fora, Postgrad Program Computat Modeling, Juiz De Fora, Brazil
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT I | 2017年 / 10404卷
关键词
Bat algorithm; Sensitivity; Parameter analysis; Nonlinear optimization; Unconstrained optimization; OPTIMIZATION;
D O I
10.1007/978-3-319-62392-4_36
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Heuristics and metaheuristics are known to be sensitive to input parameters. Bat algorithm (BA), a recent optimization metaheuristic, has a great number of input parameters that need to be adjusted in order to increase the quality of the results. Despites the crescent number of works with BA in literature, to the best of our knowledge, there is no work that aims the fine tuning of the parameters. In this work we use benchmark functions and more than 9 millions tests with BA in order to find the best set of parameters. Our experiments shown that we can have almost 14000% of difference in objective function value between the best and the worst set of parameters. Finally, this work shows how to choose input parameters in order to make Bat Algorithm to achieve better results.
引用
收藏
页码:494 / 508
页数:15
相关论文
共 25 条
  • [1] Akay B, 2009, LECT NOTES ARTIF INT, V5796, P608
  • [2] Altringham J.D., 2011, BATS EVOLUTION CONSE
  • [3] A survey on optimization metaheuristics
    Boussaid, Ilhern
    Lepagnot, Julien
    Siarry, Patrick
    [J]. INFORMATION SCIENCES, 2013, 237 : 82 - 117
  • [4] Cordeiro J., 2012, ENC NAC INT ART ENIA, V1, P1
  • [5] Using experimental design to find effective parameter settings for heuristics
    Coy, SP
    Golden, BL
    Runger, GC
    Wasil, EA
    [J]. JOURNAL OF HEURISTICS, 2001, 7 (01) : 77 - 97
  • [6] Differential Evolution: A Survey of the State-of-the-Art
    Das, Swagatam
    Suganthan, Ponnuthurai Nagaratnam
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) : 4 - 31
  • [7] Field A. P, 2006, ENCY MEASUREMENT STA, P33
  • [8] Gavana A., TEST FUNCTIONS INDEX
  • [9] Goel N, 2013, INT J ADV RES COMPUT, V31, P1405
  • [10] Khan K, 2011, ADV INTEL SOFT COMPU, V101, P59