A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors

被引:9
作者
Chainais-Hillairet, Claire [2 ]
Gisclon, Marguerite [3 ]
Juengel, Ansgar [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Univ Clermont Ferrand, Math Lab, CNRS, UMR 6620, F-63177 Aubiere, France
[3] Univ Savoie, Math Lab, CNRS, UMR 5127, F-73376 Le Bourget Du Lac, France
基金
奥地利科学基金会;
关键词
density-gradient model; discrete Sobolev inequality; existence of solutions; finite-volume method; numerical convergence; quantum Bohm potential; quantum semiconductor devices; HYDRODYNAMIC EQUATIONS; DEVICE; CONVERGENCE; SIMULATION; TRANSPORT; ELECTRON; SYSTEM; STATE; LIMIT;
D O I
10.1002/num.20592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite-volume scheme for the stationary unipolar quantum drift-diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth-order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet-Neumann boundary conditions. The numerical scheme is based on a Scharfetter-Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. (C) 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483-1510, 2011
引用
收藏
页码:1483 / 1510
页数:28
相关论文
共 50 条
  • [41] Monte Carlo simulation of bulk semiconductors for accurate calculation of drift velocity as a parameter for drift-diffusion, hydrodynamic models
    Donnarumma, Gesualdo
    Wozny, Janusz
    Lisik, Zbigniew
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 165 (1-2): : 47 - 49
  • [42] FINITE-VOLUME METHODS FOR ANISOTROPIC DIFFUSION PROBLEMS ON SKEWED MESHES
    Liu, Xiaogang
    Ming, Pingjian
    Zhang, Wenping
    Fu, Lirong
    Jing, Lilong
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 68 (03) : 239 - 256
  • [43] A scheme using finite-volume method for local horizontal derivatives in spectral model: Hydrostatic case
    Yang, Jinhui
    Wu, Jianping
    Song, Junqiang
    Peng, Jun
    Yin, Fukang
    Leng, Hongze
    Ren, Kaijun
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2023, 149 (753) : 1263 - 1270
  • [44] Asymptotic stability of stationary solutions to the drift-diffusion model with the fractional dissipation
    Sugiyama, Yuusuke
    Yamamoto, Masakazu
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1383 - 1417
  • [45] Relaxation Limit from the Quantum Navier-Stokes Equations to the Quantum Drift-Diffusion Equation
    Antonelli, Paolo
    Carnevale, Giada Cianfarani
    Lattanzio, Corrado
    Spirito, Stefano
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (05)
  • [46] Learning Quantum Drift-Diffusion Phenomenon by Physics-Constraint Machine Learning
    Li, Chun
    Yang, Yunyun
    Liang, Hui
    Wu, Boying
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2022, 30 (05) : 2090 - 2101
  • [47] A finite-volume diffusion-limited aggregation model for predicting the effective thermal conductivity of frost
    Negrelli, Silvia
    Cardoso, Rodrigo P.
    Hermes, Christian J. L.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 101 : 1263 - 1272
  • [48] On the uniqueness and stability of solutions to the control problems for the electron drift-diffusion model
    Brizitskii, R. V.
    Maksimova, N. N.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2025, 35 (01): : 27 - 46
  • [49] ASYMPTOTIC STABILITY OF STATIONARY SOLUTIONS TO THE DRIFT-DIFFUSION MODEL IN THE WHOLE SPACE
    Kobayashi, Ryo
    Yamamoto, Masakazu
    Kawashima, Shuichi
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) : 1097 - 1121
  • [50] FORMAL DERIVATION OF QUANTUM DRIFT-DIFFUSION EQUATIONS WITH SPIN-ORBIT INTERACTION
    Barletti, Luigi
    Holzinger, Philipp
    Juengel, Ansgar
    KINETIC AND RELATED MODELS, 2022, 15 (02) : 257 - 282