A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors

被引:9
作者
Chainais-Hillairet, Claire [2 ]
Gisclon, Marguerite [3 ]
Juengel, Ansgar [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Univ Clermont Ferrand, Math Lab, CNRS, UMR 6620, F-63177 Aubiere, France
[3] Univ Savoie, Math Lab, CNRS, UMR 5127, F-73376 Le Bourget Du Lac, France
基金
奥地利科学基金会;
关键词
density-gradient model; discrete Sobolev inequality; existence of solutions; finite-volume method; numerical convergence; quantum Bohm potential; quantum semiconductor devices; HYDRODYNAMIC EQUATIONS; DEVICE; CONVERGENCE; SIMULATION; TRANSPORT; ELECTRON; SYSTEM; STATE; LIMIT;
D O I
10.1002/num.20592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite-volume scheme for the stationary unipolar quantum drift-diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth-order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet-Neumann boundary conditions. The numerical scheme is based on a Scharfetter-Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. (C) 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483-1510, 2011
引用
收藏
页码:1483 / 1510
页数:28
相关论文
共 50 条
  • [31] A Hybrid Finite-Volume and Finite Difference Scheme for Depth-Integrated Non-Hydrostatic Model
    YIN Jing
    SUN Jia-wen
    WANG Xing-gang
    YU Yong-hai
    SUN Zhao-chen
    ChinaOceanEngineering, 2017, 31 (03) : 261 - 271
  • [32] A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model
    Yin Jing
    Sun Jia-wen
    Wang Xing-gang
    Yu Yong-hai
    Sun Zhao-chen
    CHINA OCEAN ENGINEERING, 2017, 31 (03) : 261 - 271
  • [33] A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model
    Jing Yin
    Jia-wen Sun
    Xing-gang Wang
    Yong-hai Yu
    Zhao-chen Sun
    China Ocean Engineering, 2017, 31 : 261 - 271
  • [34] AN ERROR ESTIMATE FOR FINITE-VOLUME METHODS FOR MULTIDIMENSIONAL CONSERVATION-LAWS
    COCKBURN, B
    COQUEL, F
    LEFLOCH, P
    MATHEMATICS OF COMPUTATION, 1994, 63 (207) : 77 - 103
  • [35] Conservative model reduction for finite-volume models
    Carlberg, Kevin
    Choi, Youngsoo
    Sargsyan, Syuzanna
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 371 : 280 - 314
  • [36] TWO SPINORIAL DRIFT-DIFFUSION MODELS FOR QUANTUM ELECTRON TRANSPORT IN GRAPHENE
    Zamponi, Nicola
    Juengel, Ansgar
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (03) : 807 - 830
  • [37] A convergent finite-volume scheme for nonlocal cross-diffusion systems for multi-species populations
    Juengel, Ansgar
    Portisch, Stefan
    Zurek, Antoine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (02) : 759 - 792
  • [38] Finite-volume scheme for the solution of integral boundary layer equations
    Lokatt, Mikaela
    Eller, David
    COMPUTERS & FLUIDS, 2016, 132 : 62 - 71
  • [39] Treatment of Checkerboard Pressure in the Collocated Unstructured Finite-Volume Scheme
    Larmaei, M. Moradi
    Behzadi, J.
    Mahdi, Tew-Fik
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2010, 58 (02) : 121 - 144
  • [40] A new Control Volume Finite Element Method for the stable and accurate solution of the drift-diffusion equations on general unstructured grids
    Bochev, Pavel
    Peterson, Kara
    Gao, Xujiao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 254 : 126 - 145