A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors

被引:9
|
作者
Chainais-Hillairet, Claire [2 ]
Gisclon, Marguerite [3 ]
Juengel, Ansgar [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Univ Clermont Ferrand, Math Lab, CNRS, UMR 6620, F-63177 Aubiere, France
[3] Univ Savoie, Math Lab, CNRS, UMR 5127, F-73376 Le Bourget Du Lac, France
基金
奥地利科学基金会;
关键词
density-gradient model; discrete Sobolev inequality; existence of solutions; finite-volume method; numerical convergence; quantum Bohm potential; quantum semiconductor devices; HYDRODYNAMIC EQUATIONS; DEVICE; CONVERGENCE; SIMULATION; TRANSPORT; ELECTRON; SYSTEM; STATE; LIMIT;
D O I
10.1002/num.20592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite-volume scheme for the stationary unipolar quantum drift-diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth-order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet-Neumann boundary conditions. The numerical scheme is based on a Scharfetter-Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. (C) 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483-1510, 2011
引用
收藏
页码:1483 / 1510
页数:28
相关论文
共 50 条
  • [21] Comparison of finite-volume schemes for diffusion problems
    Schneider, Martin
    Glaeser, Dennis
    Flemisch, Bernd
    Helmig, Rainer
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2018, 73
  • [22] A QUANTUM DRIFT-DIFFUSION MODEL AND ITS USE INTO A HYBRID STRATEGY FOR STRONGLY CONFINED NANOSTRUCTURES
    Jourdana, Clement
    Pietra, Paola
    KINETIC AND RELATED MODELS, 2019, 12 (01) : 217 - 242
  • [23] High-order finite-volume modeling of drift waves
    Dorf, M.
    Dorr, M.
    Hittinger, J.
    Lee, W.
    Ghosh, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 373 : 446 - 454
  • [24] Spin drift-diffusion for two-subband quantum wells
    de Assis, I. R.
    Raimondi, R.
    Ferreira, G. J.
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [25] CONVERGENCE OF THE FINITE-VOLUME METHOD FOR MULTIDIMENSIONAL CONSERVATION-LAWS
    COCKBURN, B
    COQUEL, F
    LEFLOCH, PG
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) : 687 - 705
  • [26] Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation
    de Falco, Carlo
    Jerome, Joseph W.
    Sacco, Riccardo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (05) : 1770 - 1789
  • [27] Parameter-free continuous drift-diffusion models of amorphous organic semiconductors
    Kordt, Pascal
    Stodtmann, Sven
    Badinski, Alexander
    Al Helwi, Mustapha
    Lennartz, Christian
    Andrienko, Denis
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (35) : 22778 - 22783
  • [28] Analysis of a drift-diffusion model for organic semiconductor devices
    Duy-Hai Doan
    Glitzky, Annegret
    Liero, Matthias
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [29] FINITE-VOLUME METHODS FOR CONVECTION-DIFFUSION PROBLEMS
    STYNES, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 63 (1-3) : 83 - 90
  • [30] Parallel domain decomposition methods for a quantum-corrected drift-diffusion model for MOSFET devices
    Sho, Shohiro
    Odanaka, Shinji
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 237 : 8 - 16