A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors

被引:9
|
作者
Chainais-Hillairet, Claire [2 ]
Gisclon, Marguerite [3 ]
Juengel, Ansgar [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Univ Clermont Ferrand, Math Lab, CNRS, UMR 6620, F-63177 Aubiere, France
[3] Univ Savoie, Math Lab, CNRS, UMR 5127, F-73376 Le Bourget Du Lac, France
基金
奥地利科学基金会;
关键词
density-gradient model; discrete Sobolev inequality; existence of solutions; finite-volume method; numerical convergence; quantum Bohm potential; quantum semiconductor devices; HYDRODYNAMIC EQUATIONS; DEVICE; CONVERGENCE; SIMULATION; TRANSPORT; ELECTRON; SYSTEM; STATE; LIMIT;
D O I
10.1002/num.20592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite-volume scheme for the stationary unipolar quantum drift-diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth-order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet-Neumann boundary conditions. The numerical scheme is based on a Scharfetter-Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. (C) 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483-1510, 2011
引用
收藏
页码:1483 / 1510
页数:28
相关论文
共 50 条
  • [1] A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors
    Chainais-Hillairet, Claire
    Juengel, Ansgar
    Shpartko, Polina
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 819 - 846
  • [2] A drift-diffusion model for semiconductors with temperature effects
    Xu, Xiangsheng
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 1101 - 1119
  • [3] On the stationary quantum drift-diffusion model
    Ben Abdallah, N
    Unterreiter, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 251 - 275
  • [4] Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors
    Acharyya, Aritra
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (01) : 309 - 320
  • [5] QUASI-NEUTRAL LIMIT OF THE MULTIDIMENSIONAL DRIFT-DIFFUSION MODELS FOR SEMICONDUCTORS
    Ju, Qiangchang
    Wang, Shu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (09): : 1649 - 1679
  • [6] A finite-volume scheme for fractional diffusion on bounded domains
    Bailo, Rafael
    Carrillo, Jose A.
    Fronzoni, Stefano
    Gomez-Castro, David
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2025, 36 (02) : 398 - 418
  • [7] The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium
    Pinaud, Olivier
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (03): : 811 - 836
  • [8] Analysis of a finite-volume scheme for a single-species biofilm model
    Helmer, Christoph
    Juengel, Ansgar
    Zurek, Antoine
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 386 - 405
  • [9] Implementation of a Numerical Method for Quantum Drift-Diffusion Equations
    Farahbakhsh, M. B.
    Hosseini, S. E.
    Taghizadeh, H.
    2009 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC 2009), 2009, : 481 - +
  • [10] Self-consistent quantum drift-diffusion model for multiple quantum well IMPATT diodes
    Ghosh, Monisha
    Ghosh, Somrita
    Acharyya, Aritra
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2016, 15 (04) : 1370 - 1387