Unusual chalcogen ••• chalcogen interactions in like ••• like and unlike YQCQY ••• YQCQY complexes (Y = O, S, and Se)

被引:15
作者
Ibrahim, Mahmoud A. A. [1 ]
Shehata, Mohammed N., I [1 ]
Soliman, Mahmoud E. S. [2 ]
Moustafa, Mahmoud F. [3 ,4 ]
Abd El-Mageed, H. R. [5 ]
Moussa, Nayra A. M. [1 ]
机构
[1] Minia Univ, Fac Sci, Chem Dept, Computat Chem Lab, Al Minya 61519, Egypt
[2] Univ KwaZulu Natal, Sch Hlth Sci, Mol Biocomputat & Drug Design Lab, ZA-4000 Durban, South Africa
[3] King Khalid Univ, Coll Sci, Dept Biol, Abha 9004, Saudi Arabia
[4] South Valley Univ, Fac Sci, Dept Bot & Microbiol, Qena 83523, Egypt
[5] Beni Suef Univ, Fac Sci, Microanal Environm Res & Community Affairs Ctr MA, Bani Suwayf 62511, Egypt
关键词
CORRELATED MOLECULAR CALCULATIONS; PAIR HOLE INTERACTIONS; GAUSSIAN-BASIS SETS; SIGMA-HOLE; HALOGEN INTERACTIONS; NONCOVALENT INTERACTIONS; TETREL BOND; CRYSTAL-STRUCTURE; HYDROGEN-BONDS; PNICOGEN BOND;
D O I
10.1039/d1cp02706a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chalcogen center dot center dot center dot chalcogen interactions were investigated within four types of like center dot center dot center dot like and unlike Y=C=Y center dot center dot center dot Y complexes (where Y = O, S, or Se). A plethora of quantum mechanical calculations, including molecular electrostatic potential (MEP), surface electrostatic potential extrema, point-of-charge (PoC), quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI), and symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) calculations, were executed. The energetic findings revealed a preferential tendency of the studied chalcogen-bearing molecules to engage in type I, II, III, or IV chalcogenMIDLINE HORIZONTAL ELLIPSISchalcogen interactions. Notably, the selenium-bearing molecules exhibited the most potent ability to favorably participate in all the explored chalcogen center dot center dot center dot chalcogen interactions. Among likeMIDLINE HORIZONTAL ELLIPSISlike complexes, type IV interactions showed the most favorable negative binding energies, whereas type III interactions exhibited the weakest binding energies. Unexpectedly, oxygen-containing complexes within type IV interactions showed an alien pattern of binding energies that decreased along with an increase in the chalcogen atomic size level. QTAIM analysis provided a solo BCP, via chalcogenMIDLINE HORIZONTAL ELLIPSISchalcogen interactions, with no clues as to any secondary ones. SAPT-EDA outlined the domination of the explored interactions by the dispersion forces and indicated the pivotal shares of the electrostatic forces, except type III sigma-hole center dot center dot center dot sigma-hole and di-sigma-hole interactions. These observations demonstrate in better detail all the types of chalcogen center dot center dot center dot Schalcogen interactions, providing persuasive reasons for their more intensive use in versatile fields related to materials science and drug design.
引用
收藏
页码:3386 / 3399
页数:14
相关论文
共 41 条
  • [21] Theoretical Investigations on the Weak Nonbonded C=S•••CH2 Interactions: Chalcogen-Bonded Complexes With Singlet Carbene as an Electron Donor
    Zhao, Qiang
    Feng, Dacheng
    Sun, Youmin
    Hao, Jingcheng
    Cai, Zhengting
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (14) : 3881 - 3887
  • [22] Rhodium(I) carbonyl complexes of chalcogen functionalized tripodal phosphines, [CH3C(CH2P(X)Ph2)3] {X = O, S, Se} and their reactivity
    Dutta, Dipak Kumar
    Woollins, J. Derek
    Slawin, Alexandra M. Z.
    Fuller, Amy L.
    Deb, Biswajit
    Sarmah, Podma Pollov
    Pathak, Madan Gopal
    Konwar, Dilip
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2009, 313 (1-2) : 100 - 106
  • [23] Chalcogen-bonded complexes. Selenium-bound adducts of NH3, H2O, PH3, and H2S with OCSe, SCSe, and CSe2
    Ramasami, Ponnadurai
    Ford, Thomas A.
    [J]. JOURNAL OF MOLECULAR MODELING, 2015, 21 (02)
  • [24] An insight into the hydrogen bonding, halogen bonding and chalcogen bonding interactions in manganese(iii) complexes with N2O2donor salicylidine Schiff base ligands
    Karmakar, Mridul
    Sk, Wahedur
    Gomila, Rosa. M. M.
    Drew, Michael. G. B.
    Frontera, Antonio
    Chattopadhyay, Shouvik
    [J]. RSC ADVANCES, 2023, 13 (31) : 21211 - 21224
  • [25] Cooperativity effects between σ-hole interactions: a theoretical evidence for mutual influence between chalcogen bond and halogen bond interactions in F2S•••NCX•••NCY complexes (X = F, Cl, Br, I; Y = H, F, OH)
    Esrafili, Mehdi D.
    Vakili, Mahshad
    [J]. MOLECULAR PHYSICS, 2014, 112 (20) : 2746 - 2752
  • [26] Rhodium(I) carbonyl complexes of tetradentate chalcogen functionalized phosphines, [P′(X)(CH2CH2P(X)Ph2)3] {X = O, S, Se}: Synthesis, reactivity and catalytic carbonylation reaction
    Deb, Biswajit
    Sarmah, Podma Pollov
    Saikia, Kokil
    Fuller, Amy L.
    Randall, Rebecca A. M.
    Slawin, Alexandra M. Z.
    Woollins, J. Derek
    Dutta, Dipak Kumar
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2011, 696 (20) : 3279 - 3283
  • [27] A Computational Study of Chalcogen-containing H2X...YF and (CH3)2X...YF (X=O, S, Se; Y=F, Cl, H) and Pnicogen-containing H3X′...YF and (CH3)3X′...YF (X′=N, P, As) Complexes
    McDowell, Sean A. C.
    Buckingham, A. David
    [J]. CHEMPHYSCHEM, 2018, 19 (14) : 1756 - 1765
  • [28] Interactions of (MY)6 (M = Zn, Cd; Y = O, S, Se) quantum dots with N-bases
    Michalczyk, Mariusz
    Zierkiewicz, Wiktor
    Scheiner, Steve
    [J]. STRUCTURAL CHEMISTRY, 2019, 30 (03) : 1003 - 1014
  • [29] Effect of chalcogen substituents (X = Se, S, O) on molecular properties of 5-p-chlorobenzylidene-3-methyl-2-X-hydantoin: X-ray, PM-3 and database study
    Zeslawska, E
    Oleksyn, BJ
    Korohoda, MJ
    Sliwinski, J
    [J]. PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 1997, 126 : 111 - 124
  • [30] Synthesis and Characterization of Mixed Chalcogen Triangular Complexes with New Mo3(μ3-S)(μ2-Se2)34+ and M3(μ3-S)μ2-Se)34+ (M = Mo, W) Cluster Cores
    Gushchin, Artem L.
    Ooi, Bee-Lean
    Harris, Pernille
    Vicent, Cristian
    Sokolov, Maxim N.
    [J]. INORGANIC CHEMISTRY, 2009, 48 (08) : 3832 - 3839