Markov cubature rules for polynomial processes

被引:3
作者
Filipovic, Damir [1 ,2 ]
Larsson, Martin [3 ]
Pulido, Sergio [4 ,5 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Swiss Finance Inst, CH-1015 Lausanne, Switzerland
[3] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[4] Univ Evry Val Essonne, Lab Math & Modelisat Evry LaMME, UMR CNRS 8071, IBGBI 23 Blvd France, F-91037 Evry, France
[5] Univ Paris Saclay, ENSILE, St Aubin, France
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Polynomial process; Cubature rule; Asymptotic moments; Transition rate matrix; Transition probabilities; American options; DIFFERENTIAL-EQUATIONS; DIFFUSION-MODELS; EXCHANGE-RATES; APPROXIMATIONS; SIMULATION;
D O I
10.1016/j.spa.2019.06.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study discretizations of polynomial processes using finite state Markov processes satisfying suitable moment matching conditions. The states of these Markov processes together with their transition probabilities can be interpreted as Markov cubature rules. The polynomial property allows us to study such rules using algebraic techniques. Markov cubature rules aid the tractability of path-dependent tasks such as American option pricing in models where the underlying factors are polynomial processes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1947 / 1971
页数:25
相关论文
共 36 条
[1]  
Ackerer D., 2016, 1634 SWISS FIN I RES
[2]   The Jacobi stochastic volatility model [J].
Ackerer, Damien ;
Filipovic, Damir ;
Pulido, Sergio .
FINANCE AND STOCHASTICS, 2018, 22 (03) :667-700
[3]  
[Anonymous], 2002, Asia-Pacific Financial Markets
[4]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[5]   A quantization tree method for pricing and hedging multidimensional American options [J].
Bally, V ;
Pagès, G ;
Printems, J .
MATHEMATICAL FINANCE, 2005, 15 (01) :119-168
[6]   Cubature on Wiener space in infinite dimension [J].
Bayer, Christian ;
Teichmann, Josef .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2097) :2493-2516
[7]   The proof of Tchakaloff's theorem [J].
Bayer, Christian ;
Teichmann, Josef .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :3035-3040
[8]   Recombining Tree Approximations for Optimal Stopping for Diffusions [J].
Bayraktar, Erhan ;
Dolinsky, Yan ;
Guo, Jia .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (02) :602-633
[9]   Polynomial diffusion models for life insurance liabilities [J].
Biagini, Francesca ;
Zhang, Yinglin .
INSURANCE MATHEMATICS & ECONOMICS, 2016, 71 :114-129
[10]  
Billingsley Patrick, 1995, PROBABILITY MEASURE