Censored count data regression with missing censoring information

被引:2
作者
Bousselmi, Bilel [1 ]
Dupuy, Jean-Francois [1 ]
Karoui, Abderrazek [2 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
[2] Univ Carthage, Fac Sci Bizerte, Dept Math, Tunis, Tunisia
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 02期
关键词
Poisson regression; asymptotic properties; missing data; regression calibration; multiple imputation; augmented inverse probability weighting; simulations; GENERALIZED LINEAR-MODELS; ZERO-INFLATED POISSON; COMPETING RISKS DATA; MULTIPLE IMPUTATION; SURVIVAL-DATA; CALIBRATION; INDICATORS; FAILURE; ESTIMATORS; VALUES;
D O I
10.1214/21-EJS1897
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate estimation in Poisson regression model when the count response is right-censored and the censoring indicators are missing at random. We propose several estimators based on the regression calibration, multiple imputation and augmented inverse probability weighting methods. Under appropriate regularity conditions, we prove the consistency of our estimators and we derive their asymptotic distributions. Simulation experiments are carried out to investigate the finite sample behaviour and relative performance of the proposed estimates. These estimates are illustrated on a real data set.
引用
收藏
页码:4343 / 4383
页数:41
相关论文
共 50 条
  • [31] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [32] Likelihood testing with censored and missing duration data
    Balakrishnan N.
    Stehlík M.
    Journal of Statistical Theory and Practice, 2015, 9 (1) : 2 - 22
  • [33] The missing indicator approach for censored covariates subject to limit of detection in logistic regression models
    Chiou, Sy Han
    Betensky, Rebecca A.
    Balasubramanian, Raji
    ANNALS OF EPIDEMIOLOGY, 2019, 38 : 57 - 64
  • [34] How to handle missing data in regression models using information criteria
    Kuiper, Rebecca M.
    Hoijtink, Herbert
    STATISTICA NEERLANDICA, 2011, 65 (04) : 489 - 506
  • [35] Bayesian analysis of survival data with missing censoring indicators
    Brownstein, Naomi C.
    Bunn, Veronica
    Castro, Luis M.
    Sinha, Debajyoti
    BIOMETRICS, 2021, 77 (01) : 305 - 315
  • [36] Using multiple imputation to estimate missing data in meta-regression
    Ellington, E. Hance
    Bastille-Rousseau, Guillaume
    Austin, Cayla
    Landolt, Kristen N.
    Pond, Bruce A.
    Rees, Erin E.
    Robar, Nicholas
    Murray, Dennis L.
    METHODS IN ECOLOGY AND EVOLUTION, 2015, 6 (02): : 153 - 163
  • [37] Least squares support vector regression for complex censored data
    Liu, Xinrui
    Dong, Xiaogang
    Zhang, Le
    Chen, Jia
    Wang, Chunjie
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 136
  • [38] Missing Step Count Data? Step Away From the Expectation-Maximization Algorithm
    Tackney, Mia S.
    Stahl, Daniel
    Williamson, Elizabeth
    Carpenter, James
    JOURNAL FOR THE MEASUREMENT OF PHYSICAL BEHAVIOUR, 2022, 5 (04) : 205 - 214
  • [39] Dealing with missing information on covariates for excess mortality hazard regression models - Making the imputation model compatible with the substantive model
    Antunes, Luis
    Mendonca, Denisa
    Bento, Maria Jose
    Njagi, Edmund Njeru
    Belot, Aurelien
    Rachet, Bernard
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (10) : 2256 - 2268
  • [40] Multiple imputation of censored survival data in the presence of missing covariates using restricted mean survival time
    Grover, Gurprit
    Gupta, Vinay K.
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 817 - 827