Tunable Weyl half-semimetals in two-dimensional iron-based materials MFeSe (M = Tl, In, Ga)

被引:17
作者
Huan, Hao [1 ,2 ,3 ,4 ]
Xue, Yang [1 ,2 ,3 ,5 ]
Zhao, Bao [1 ,2 ,3 ,6 ]
Bao, Hairui [1 ,2 ,3 ,4 ]
Liu, Lei [1 ,2 ,3 ,4 ]
Yang, Zhongqin [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[4] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
[5] East China Univ Sci & Technol, Sch Sci, Shanghai 200237, Peoples R China
[6] Liaocheng Univ, Sch Phys Sci & Informat Technol, Shandong Key Lab Opt Commun Sci & Technol, Liaocheng 252059, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; SUPERCONDUCTIVITY; FERROMAGNETISM; SPINTRONICS; FERMIONS; CRYSTAL;
D O I
10.1103/PhysRevB.106.125404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The layered iron chalcogenide materials have attracted considerable attention recently for their exotic su-perconductivity at relatively high temperatures. Topological phases are, however, seldom proposed in these materials. Based on density-functional theory calculations together with symmetry analysis, 100% spin-polarized Weyl semimetals, namely Weyl half semimetals (WHSMs), are predicted in two-dimensional (2D) TlFeSe and GaFeSe monolayers, built based on FeSe monolayers. The acquired Weyl fermions are protected by a nonsymmorphic symmetry. Dissimilarly, the InFeSe monolayer is found to be a quantum anomalous Hall (QAH) insulator with a large band gap (403 meV). By tuning the magnetization direction, the monolayers can vary from a WHSM to a QAH insulator or vice versa. The phase-transition mechanism is analyzed by using an effective k & BULL; p model. Our work provides a pathway to carry out the fascinating 2D WHSMs and the QAH effect in one material which will have promising applications in not only spintronics but also topological microelectronics.
引用
收藏
页数:9
相关论文
共 69 条
[1]   2D materials for spintronic devices [J].
Ahn, Ethan C. .
NPJ 2D MATERIALS AND APPLICATIONS, 2020, 4 (01)
[2]   NEW APPROACH TO THE THEORY OF SUPEREXCHANGE INTERACTIONS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1959, 115 (01) :2-13
[3]  
[Anonymous], PHYS REV B, V106, DOI [10.1103/PhysRevB.106.125404, DOI 10.1103/PHYSREVB.106.125404]
[4]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[5]   Two-dimensional Weyl points and nodal lines in pentagonal materials and their optical response [J].
Bravo, Sergio ;
Pacheco, M. ;
Nunez, V. ;
Correa, J. D. ;
Chico, Leonor .
NANOSCALE, 2021, 13 (12) :6117-6128
[6]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[7]  
Burrard-Lucas M, 2013, NAT MATER, V12, P15, DOI [10.1038/NMAT3464, 10.1038/nmat3464]
[8]   Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures [J].
Cao, Chao ;
Wu, Min ;
Jiang, Jianzhong ;
Cheng, Hai-Ping .
PHYSICAL REVIEW B, 2010, 81 (20)
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Large quantum-spin-Hall gap in single-layer 1T′ WSe2 [J].
Chen, P. ;
Pai, Woei Wu ;
Chan, Y. -H. ;
Sun, W. -L. ;
Xu, C. -Z. ;
Lin, D. -S. ;
Chou, M. Y. ;
Fedorov, A. -V. ;
Chiang, T. -C. .
NATURE COMMUNICATIONS, 2018, 9