Capacity Estimation from Environmental Audio Signals Using Deep Learning

被引:1
作者
Reyes-Daneri, C. [1 ]
Martinez-Murcia, F. J. [2 ,3 ]
Ortiz, A. [1 ,3 ]
机构
[1] Univ Malaga, Commun Engn Dept, Malaga 29004, Spain
[2] Univ Granada, Dept Signal Theory Commun & Networking, Granada 18060, Spain
[3] Andalusian Data Sci & Computat Intelligence Inst, Jaen, Spain
来源
ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I | 2022年 / 13258卷
关键词
Automated Crowd Counting; Capacity control; Convolutional Neural Networks; Regression;
D O I
10.1007/978-3-031-06242-1_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating the capacity of a room or venue is essential to avoid overcrowding that could compromise people's safety. Having enough free space to guarantee a minimal safety distance between people is also essential for health reasons, as in the current COVID-19 pandemic. Already existing systems for automatic crowd counting are mostly based on image or video data, and some of them, using deep learning architectures. In this paper, we study the viability of already existing Deep Learning Crowd Counting systems and propose new alternatives based on new network architectures containing convolutional layers, exclusively based on the use of environmental audio signals. The proposed architecture is able to infer the actual capacity with a higher accuracy in comparison to previous proposals. Consequently, conclusions from the accuracy obtained with out approach are drawn and the possible scope of deep learning based crowd counting systems is discussed.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 14 条
[1]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[2]   Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications [J].
Gorriz, Juan M. ;
Ramirez, Javier ;
Ortiz, Andres ;
Martinez-Murcia, Francisco J. ;
Segovia, Fermin ;
Suckling, John ;
Leming, Matthew ;
Zhang, Yu-Dong ;
Ramon Alvarez-Sanchez, Jose ;
Bologna, Guido ;
Bonomini, Paula ;
Casado, Fernando E. ;
Charte, David ;
Charte, Francisco ;
Contreras, Ricardo ;
Cuesta-Infante, Alfredo ;
Duro, Richard J. ;
Fernandez-Caballero, Antonio ;
Fernandez-Jover, Eduardo ;
Gomez-Vilda, Pedro ;
Grana, Manuel ;
Herrera, Francisco ;
Iglesias, Roberto ;
Lekova, Anna ;
de Lope, Javier ;
Lopez-Rubio, Ezequiel ;
Martinez-Tomas, Rafael ;
Molina-Cabello, Miguel A. ;
Montemayor, Antonio S. ;
Novais, Paulo ;
Palacios-Alonso, Daniel ;
Pantrigo, Juan J. ;
Payne, Bryson R. ;
de la Paz Lopez, Felix ;
Angelica Pinninghoff, Maria ;
Rincon, Mariano ;
Santos, Jose ;
Thurnhofer-Hemsi, Karl ;
Tsanas, Athanasios ;
Varela, Ramiro ;
Ferrandez, Jose M. .
NEUROCOMPUTING, 2020, 410 :237-270
[3]  
Hershey S., 2017, arXiv
[4]  
Hu D, 2020, Arxiv, DOI arXiv:2005.07097
[5]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[6]  
Li Y., 2018, ARXIV
[7]  
Liu WZ, 2019, Arxiv, DOI arXiv:1811.10452
[8]  
Thomas C., 2019, JOURNAL
[9]   Robust real-time face detection [J].
Viola, P ;
Jones, MJ .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 57 (02) :137-154
[10]  
Wang Q, 2020, AUDIOVISUAL CROWD CO, DOI [10.5281/zenodo.3828468, DOI 10.5281/ZENODO.3828468]