Bronchial mucins from severely infected patients suffering from lung diseases such as chronic bronchitis or cystic fibrosis exhibit increased amounts of sialyl-Lewis(x) (NeuAc alpha 2-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc-R, sLe(x)) glycan structures. In cystic fibrosis, sLe(x) and its sulfated form 6-sulfo-sialyl-Lewis(x) (NeuAc alpha 2-3Gal beta 1-4 [Fuc alpha 1-3](HO3S-6)GlcNAc-R, 6-sulfo-sLe(x)) serve as receptors for Pseudomonas aeruginosa and are involved in the chronicity of airway infection. However, little is known about the molecular mechanisms regulating the changes in glycosylation and sulfation of mucins in airways. Herein, we show that the proinflammatory cytokine TNF increases the expression of alpha 2,3-sialyltransferase gene ST3GAL4, both in human bronchial mucosa and in A549 lung carcinoma cells. The role of sialyltransferase ST3Gal IV in sLe(x) biosynthesis was confirmed by siRNA silencing of ST3GAL4 gene. BX is the major transcript isoform expressed in healthy bronchial mucosa and in A549 cells, and is up-regulated by TNF in both models. Bioinformatics analysis and luciferase assays have confirmed that the 2 kb genomic sequence surrounding BX exon contains a promoter region regulated by TNF-related transcription factors. These results support further work aiming at the development of anti-inflammatory strategy to reduce chronic airway infection in diseases such as cystic fibrosis. (C) 2012 Elsevier Masson SAS. All rights reserved.