sciCNV: high-throughput paired profiling of transcriptomes and DNA copy number variations at single-cell resolution

被引:14
作者
Mahdipour-Shirayeh, Ali [1 ,2 ]
Erdmann, Natalie [1 ]
Leung-Hagesteijn, Chungyee [1 ]
Tiedemann, Rodger E. [3 ,4 ]
机构
[1] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[2] Univ Toronto, Fac Med, Toronto, ON, Canada
[3] Princess Margaret Canc Ctr, Toronto, ON, Canada
[4] Univ Toronto, Med & Med Biophys, Toronto, ON, Canada
关键词
single-cell RNA sequencing (scRNA-seq); copy number variation (CNV); normalization; multi-omics; multiple myeloma; RTAM; sciCNV; CHALLENGES; GENOME; GENES;
D O I
10.1093/bib/bbab413
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Chromosome copy number variations (CNVs) are a near-universal feature of cancer; however, their individual effects on cellular function are often incompletely understood. Single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) might be leveraged to reveal the function of intra-clonal CNVs; however, it cannot directly link cellular gene expression to CNVs. Here, we report a high-throughput scRNA-seq analysis pipeline that provides paired CNV profiles and transcriptomes for single cells, enabling exploration of the effects of CNVs on cellular programs. RTAM1 and -2 normalization methods are described, and are shown to improve transcriptome alignment between cells, increasing the sensitivity of scRNA-seq for CNV detection. We also report single-cell inferred chromosomal copy number variation (sciCNV), a tool for inferring single-cell CNVs from scRNA-seq at 19-46 Mb resolution. Comparison of sciCNV with existing RNA-based CNV methods reveals useful advances in sensitivity and specificity. Using sciCNV, we demonstrate that scRNA-seq can be used to examine the cellular effects of cancer CNVs. As an example, sciCNV is used to identify subclonal multiple myeloma (MM) cells with +8q22-24. Studies of the gene expression of intra-clonal MM cells with and without the CNV demonstrate that +8q22-24 upregulates MYC and MYC-target genes, messenger RNA processing and protein synthesis, which is consistent with established models. In conclusion, we provide new tools for scRNA-seq that enable paired profiling of the CNVs and transcriptomes of single cells, facilitating rapid and accurate deconstruction of the effects of cancer CNVs on cellular programming.
引用
收藏
页数:15
相关论文
共 25 条
[11]   The Sequence Alignment/Map format and SAMtools [J].
Li, Heng ;
Handsaker, Bob ;
Wysoker, Alec ;
Fennell, Tim ;
Ruan, Jue ;
Homer, Nils ;
Marth, Gabor ;
Abecasis, Goncalo ;
Durbin, Richard .
BIOINFORMATICS, 2009, 25 (16) :2078-2079
[12]  
Li H, 2009, BIOINFORMATICS, V25, P1754, DOI [10.1093/bioinformatics/btp324, 10.1093/bioinformatics/btp698, 10.1093/bioinformatics/btp352]
[13]   Pooling across cells to normalize single-cell RNA sequencing data with many zero counts [J].
Lun, Aaron T. L. ;
Bach, Karsten ;
Marioni, John C. .
GENOME BIOLOGY, 2016, 17
[14]   G&T-seq: parallel sequencing of single-cell genomes and transcriptomes [J].
Macaulay, Iain C. ;
Haerty, Wilfried ;
Kumar, Parveen ;
Li, Yang I. ;
Hu, Tim Xiaoming ;
Teng, Mabel J. ;
Goolam, Mubeen ;
Saurat, Nathalie ;
Coupland, Paul ;
Shirley, Lesley M. ;
Smith, Miriam ;
Van der Aa, Niels ;
Banerjee, Ruby ;
Ellis, Peter D. ;
Quail, Michael A. ;
Swerdlow, Harold P. ;
Zernicka-Goetz, Magdalena ;
Livesey, Frederick J. ;
Ponting, Chris P. ;
Voet, Thierry .
NATURE METHODS, 2015, 12 (06) :519-+
[15]   MYC dysregulation in the progression of multiple myeloma [J].
Misund, Kristine ;
Keane, Niamh ;
Stein, Caleb K. ;
Asmann, Yan W. ;
Day, Grady ;
Welsh, Seth ;
Van Wier, Scott A. ;
Riggs, Daniel L. ;
Ahmann, Greg ;
Chesi, Marta ;
Viswanatha, David S. ;
Kumar, Shaji K. ;
Dispenzieri, Angela ;
Gonzalez-Calle, Veronica ;
Kyle, Robert A. ;
O'Dwyer, Michael ;
Rajkumar, S. Vincent ;
Kortuem, K. Martin ;
Keats, J. Jonathan ;
Fonseca, Rafael ;
Stewart, A. Keith ;
Kuehl, W. Michael ;
Braggio, Esteban ;
Bergsagel, P. Leif .
LEUKEMIA, 2020, 34 (01) :322-326
[16]   PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes [J].
Mootha, VK ;
Lindgren, CM ;
Eriksson, KF ;
Subramanian, A ;
Sihag, S ;
Lehar, J ;
Puigserver, P ;
Carlsson, E ;
Ridderstråle, M ;
Laurila, E ;
Houstis, N ;
Daly, MJ ;
Patterson, N ;
Mesirov, JP ;
Golub, TR ;
Tamayo, P ;
Spiegelman, B ;
Lander, ES ;
Hirschhorn, JN ;
Altshuler, D ;
Groop, LC .
NATURE GENETICS, 2003, 34 (03) :267-273
[17]   Genome-Wide Functional Synergy between Amplified and Mutated Genes in Human Breast Cancer [J].
Nikolsky, Yuri ;
Sviridov, Evgeny ;
Yao, Jun ;
Dosymbekov, Damir ;
Ustyansky, Vadirn ;
Kaznacheev, Valery ;
Dezso, Zoltan ;
Mulvey, Laura ;
Macconaill, Laura E. ;
Winckler, Wendy ;
Serebryiskaya, Tatiana ;
Nikolskaya, Tatiana ;
Polyak, Kornelia .
CANCER RESEARCH, 2008, 68 (22) :9532-9540
[18]   Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma [J].
Patel, Anoop P. ;
Tirosh, Itay ;
Trombetta, John J. ;
Shalek, Alex K. ;
Gillespie, Shawn M. ;
Wakimoto, Hiroaki ;
Cahill, Daniel P. ;
Nahed, Brian V. ;
Curry, William T. ;
Martuza, Robert L. ;
Louis, David N. ;
Rozenblatt-Rosen, Orit ;
Suva, Mario L. ;
Regev, Aviv ;
Bernstein, Bradley E. .
SCIENCE, 2014, 344 (6190) :1396-1401
[19]   DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival [J].
Peterson, Timothy R. ;
Laplante, Mathieu ;
Thoreen, Carson C. ;
Sancak, Yasemin ;
Kang, Seong A. ;
Kuehl, W. Michael ;
Gray, Nathanael S. ;
Sabatini, David M. .
CELL, 2009, 137 (05) :873-886
[20]   Computational and analytical challenges in single-cell transcriptomics [J].
Stegle, Oliver ;
Teichmann, Sarah A. ;
Marioni, John C. .
NATURE REVIEWS GENETICS, 2015, 16 (03) :133-145