Embedding theorem on RD-spaces

被引:0
作者
Han, Yanchang [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
spaces of homogeneous type; test function space; distributions; Calderon reproducing formula; Besov and Triebel-Lizorkin spaces; embedding; TRIEBEL-LIZORKIN SPACES; METRIC MEASURE-SPACES; HOMOGENEOUS TYPE; HARDY-SPACES; BESOV; GEOMETRY;
D O I
10.1186/s13660-015-0620-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An RD-space (X, d, mu) is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. An important class of RD-spaces is provided by Carnot-Caratheodory spaces with a doubling measure. In this article, the author establishes the embedding theorem for Besov and Triebel-Lizorkin spaces on RD-spaces.
引用
收藏
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1971, Lecture Notes in Mathematics
[2]  
[Anonymous], 1997, Fractals and spectra related to Fourier analysis and function spaces, DOI DOI 10.1007/978-3-0348-0034-1
[3]  
[Anonymous], 2010, Theory of Function Spaces
[4]  
Christ M., 1990, Colloq. Math., V61, P601
[5]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[6]  
David G., 1985, REV MAT IBEROAM, V1, P1, DOI [10.4171/RMI/17, 10.4171/rmi/17]
[7]  
Deng D., 2009, LECT NOTES MATH, V1966
[8]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[9]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[10]   Maximal function characterizations of Hardy spaces on RD-spaces and their applications [J].
Grafakos, Loukas ;
Liu, LiGuang ;
Yang, DaChun .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (12) :2253-2284