Time-resolved blowoff transition measurements for two-dimensional bluff body-stabilized flames in vitiated flow

被引:38
作者
Tuttle, Steven G. [1 ]
Chaudhuri, Swetaprovo [1 ]
Kostka, Stanislav, Jr. [1 ]
Kopp-Vaughan, Kristin M. [1 ]
Jensen, Trevor R. [1 ]
Cetegen, Baki M. [1 ]
Renfro, Michael W. [1 ]
机构
[1] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Vitiated flow; Bluff body flames; PIV; PLIF; High-speed imaging; Premixed; Turbulent; DYNAMICS; WAKE;
D O I
10.1016/j.combustflame.2011.06.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
Flame holding and blowoff characteristics of bluff-body stabilized, turbulent flames were measured in an enclosed rectangular duct with a triangular flame holder in vitiated, premixed flows. Blowoff stability margins were characterized with chemiluminescence measurements performed by high-speed imaging to capture flame dynamics during the approach to flame blow off. As the equivalence rat o was decreased, local extinctions along the flames interacting with shear layers surrounding the bluff body recirculation zone occurred with greater frequency and proximity to the wake stagnation zone. Decreased equivalence ratio resulted in extinction events at the trailing edge of the stagnation zone, which allowed reactants to be convected into the recirculation zone and burned behind the bluff body. Increasing reactant dilution of the recirculation zone eventually resulted in flame lift-off or extinction of the flame in the neighboring shear layer. These near field shear layer flames convected to the wake stagnation zone, and were eventually quenched. Simultaneous particle imaging velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) measurements captured the flame edge location and aerodynamic behavior as blowoff was approached. Two-dimensional hydrodynamic stretch along the flame front and flow field vorticity maps were extracted from the combined PIV/OH PLIF data. The distribution of flame stretch shifted to greater values as the equivalence ratio decreased and is believed to be the cause of local flame extinction in the wake stagnation zone that starts the blowoff process. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 305
页数:15
相关论文
共 53 条
  • [1] [Anonymous], 2007, 45 AIAA AER SCI M EX
  • [2] [Anonymous], 1971, AFAPLTR7081 MARQ CO
  • [3] [Anonymous], 2003, 41 AER SCI M EXH
  • [4] [Anonymous], 2006, COMBUSTION PHYS
  • [5] WEAK EXTINCTION LIMITS OF LARGE-SCALE FLAMEHOLDERS
    BAXTER, MR
    LEFEBVRE, AH
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1992, 114 (04): : 776 - 782
  • [6] Bird R.B., 1995, TRANSPORT PHENOMENA
  • [7] FLAME STRETCH AND THE BALANCE EQUATION FOR THE FLAME AREA
    CANDEL, SM
    POINSOT, TJ
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 1990, 70 (1-3) : 1 - 15
  • [8] Center for Energy Research (Combustion Division), 2005, CHEM KIN MECH COMB A
  • [9] Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustor
    Chaudhuri, Swetaprovo
    Kostka, Stanislav
    Tuttle, Steven G.
    Renfro, Michael W.
    Cetegen, Baki M.
    [J]. COMBUSTION AND FLAME, 2011, 158 (07) : 1358 - 1371
  • [10] Blowoff dynamics of bluff body stabilized turbulent premixed flames
    Chaudhuri, Swetaprovo
    Kostka, Stanislav
    Renfro, Michael W.
    Cetegen, Baki M.
    [J]. COMBUSTION AND FLAME, 2010, 157 (04) : 790 - 802