Traffic prediction for agent route planning

被引:0
作者
Gehrke, Jan D. [1 ]
Wojtusiak, Janusz [2 ]
机构
[1] Univ Bremen, Ctr Comp Technol TZI, D-28359 Bremen, Germany
[2] George Mason Univ, Machine Learning & Inference Lab, Fairfax, VA 22030 USA
来源
COMPUTATIONAL SCIENCE - ICCS 2008, PT 3 | 2008年 / 5103卷
基金
美国国家科学基金会;
关键词
traffic prediction; intelligent agents; natural induction;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes a methodology and initial results of predicting traffic by autonomous agents within a vehicle route planning system. The traffic predictions are made using AQ21, a natural induction system that learns and applies attributional rules. The presented methodology is implemented and experimentally evaluated within a multiagent-based simulation system. Initial results obtained by simulation indicate advantage of agents using AQ21 predictions when compared to naive agents that make no predictions and agents that use only weather-related information.
引用
收藏
页码:692 / +
页数:2
相关论文
共 10 条
[1]  
[Anonymous], 2005, P INT JOINT C AUTONO
[2]  
[Anonymous], P 18 IEEE INT C TOOL
[3]   Holonic transport scheduling with TELETRUCK [J].
Burckert, HJ ;
Fischer, K ;
Vierke, G .
APPLIED ARTIFICIAL INTELLIGENCE, 2000, 14 (07) :697-725
[4]  
Endsley M.R., 2000, SITUATION AWARENESS
[5]  
GEHRKE JD, 2008, 081 MLI GEORG MAS U, P41912
[6]   An adjustable description quality measure for pattern discovery using the AQ methodology [J].
Kaufman, KA ;
Michalski, RS .
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2000, 14 (2-3) :199-216
[7]  
MICHALSKI RS, 2004, 042 MLI GEORG MAS U
[8]  
SCHOLZREITER B, 2004, P 37 CIRP INT SEM MA, P357
[9]  
*TRANSP RES BOARD, 2000, TRANSP RES BOARD HIG, P41912
[10]  
WOJTUSIAK J, 2004, 043 MLI GEORG MAS U