A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0 ≤ x ≤ 0.5) crystals: Implications on ionic conductivity

被引:69
作者
Redhammer, G. J. [1 ]
Rettenwander, D. [2 ]
Pristat, S. [3 ]
Dashjav, E. [3 ]
Kumar, C. M. N. [4 ,5 ]
Topa, D. [6 ]
Tietz, F. [3 ,7 ]
机构
[1] Salzburg Univ, Dept Chem & Phys Mat, Div Mat Sci & Mineral, Hellbrunnerstr 34, A-5020 Salzburg, Austria
[2] MIT, Ctr Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Forschungszentrum Julich GmbH, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany
[4] Forschungszentrum Julich GmbH, JCNS, Outstn SNS, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA
[6] Nat Hist Museum Vienna, Burgring 7, A-1010 Vienna, Austria
[7] Forschungszentrum Julich GmbH, Helmholtz Inst Munster, D-52425 Julich, Germany
基金
奥地利科学基金会;
关键词
LiTi2(PO4)(3); Al3+ substitution; LATP; NASICON; Single crystal X-ray diffraction; Neutron diffraction; LITHIUM MOBILITY; SOLID-ELECTROLYTE; NMR; LI1+XTI2-XALX(PO4)(3); CONDUCTORS; BATTERIES; IMPEDANCE;
D O I
10.1016/j.solidstatesciences.2016.08.011
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Single crystals of NASICON-type material Li1+xTi2-xAlx(FO4)(3) (LATP) with 0 <= x <= 0.5 were successfully grown using long-term sintering techniques. Sample material was studied by chemical analysis, single crystal X-ray and neutron diffraction. The Ti4+ replacement scales very well with the Al3+ and Li+ incorporation. The additional Li+ thereby enters the M3 cavity of the NASICON framework at x, y, z similar to (0.07, 0.34, 0.09) and is regarded to be responsible for the enhanced Li+ conduction of LATP as compared to Al-free LTP. Variations in structural parameters, associated with the Ti4+ substitution with Al3+ + Li+ will be discussed in detail in this paper. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 30 条
[1]   On the structure of Li3Ti2(PO4)3 [J].
Aatiq, A ;
Ménétrier, M ;
Croguennec, L ;
Suard, E ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :2971-2978
[2]   ELECTRICAL PROPERTY AND SINTERABILITY OF LITI2(PO4)3 MIXED WITH LITHIUM SALT (LI3PO4 OR LI3BO3) [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
SOLID STATE IONICS, 1991, 47 (3-4) :257-264
[3]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[4]   Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy [J].
Arbi, K. ;
Rojo, J. M. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) :4215-4218
[5]   High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) [J].
Arbi, K. ;
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1477-1484
[6]   Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study [J].
Arbi, K. ;
Hoelzel, M. ;
Kuhn, A. ;
Garcia-Alvarado, F. ;
Sanz, J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18397-18405
[7]   Structural Factors That Enhance Lithium Mobility in Fast-Ion Li1+xTi2-xAlx(PO4)3 (0 ≤ x ≤ 0.4) Conductors Investigated by Neutron Diffraction in the Temperature Range 100-500 K [J].
Arbi, K. ;
Hoelzel, M. ;
Kuhn, A. ;
Garcia-Alvarado, F. ;
Sanz, J. .
INORGANIC CHEMISTRY, 2013, 52 (16) :9290-9296
[8]   Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7.: A parallel NMR and electric impedance study [J].
Arbi, K ;
Mandal, S ;
Rojo, JM ;
Sanz, J .
CHEMISTRY OF MATERIALS, 2002, 14 (03) :1091-1097
[9]  
Bruker, 2015, APEX3 VERS 2015 10 0
[10]   Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2-x(PO4)3 [J].
Bucharsky, E. C. ;
Schell, K. G. ;
Hintennach, A. ;
Hoffmann, M. J. .
SOLID STATE IONICS, 2015, 274 :77-82