Separability of local reactivity descriptors

被引:7
|
作者
Tanwar, A [1 ]
Pal, S [1 ]
机构
[1] Natl Chem Lab, Div Phys Chem, Pune 411008, Maharashtra, India
关键词
local reactivity descriptors; separability; condensed Fukai functions; molecular interactions;
D O I
10.1007/BF02708355
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The size-dependence of different local reactivity descriptors of dimer A(2) and AB type of systems is discussed. We derive analytic results of these descriptors calculated using finite difference approximation. In particular, we studied Fukui functions, relative electrophilicity and relative nucleophilicity, local softness and local philicity. The results are explained using the example of the dimer of BH3NH3.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 50 条
  • [31] Separability and entanglement in tripartite states
    Luo, Shunlong
    Sun, Wei
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (03) : 1316 - 1323
  • [32] Separability and aggregation of equivalence relations
    Dinko Dimitrov
    Thierry Marchant
    Debasis Mishra
    Economic Theory, 2012, 51 : 191 - 212
  • [33] Separability in Persistent Petri Nets
    Best, Eike
    Darondeau, Philippe
    FUNDAMENTA INFORMATICAE, 2011, 113 (3-4) : 179 - 203
  • [34] Separability and randomness in free groups
    Buran, Michal
    JOURNAL OF ALGEBRA, 2022, 598 : 518 - 535
  • [35] Separability and entanglement in tripartite states
    Shunlong Luo
    Wei Sun
    Theoretical and Mathematical Physics, 2009, 160 : 1316 - 1323
  • [36] Separability, Boxicity, and Partial Orders
    José-Miguel Díaz-Báñez
    Paul Horn
    Mario A. Lopez
    Nestaly Marín
    Adriana Ramírez-Vigueras
    Oriol Solé-Pi
    Alex Stevens
    Jorge Urrutia
    Order, 2023, 40 : 699 - 712
  • [37] Efficient Algorithms for Bichromatic Separability
    Agarwal, Pankaj K.
    Aronov, Boris
    Koltun, Vladlen
    ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (02) : 209 - 227
  • [38] On separability of the unbounded norm topology
    Kandic, M.
    Vavpetic, A.
    POSITIVITY, 2023, 27 (03)
  • [39] SEPARABILITY OF MULTIPARTITE QUANTUM SYSTEMS
    Li, Ming
    Jing, Wang
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 69 (01) : 103 - 111
  • [40] On the Relation of Separability, Bandwidth and Embedding
    Béla Csaba
    Bálint Vásárhelyi
    Graphs and Combinatorics, 2019, 35 : 1541 - 1553