Self-interacting diffusions IV: Rate of convergence

被引:4
作者
Benaim, Michel [1 ]
Raimond, Olivier [2 ]
机构
[1] Univ Neuchatel, Inst Math, CH-2000 Neuchatel, Switzerland
[2] Univ Paris Ouest, Lab ModalX, F-92000 Nanterre, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2011年 / 16卷
基金
瑞士国家科学基金会;
关键词
Self-interacting random processes; reinforced processes; LAW;
D O I
10.1214/EJP.v16-948
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Self-interacting diffusions are processes living on a compact Riemannian manifold defined by a stochastic differential equation with a drift term depending on the past empirical measure mu(t) of the process. The asymptotics of mu(t) is governed by a deterministic dynamical system and under certain conditions (mu(t)) converges almost surely towards a deterministic measure mu* (see Bena m, Ledoux, Raimond (2002) and Bena m, Raimond (2005)). We are interested here in the rate of convergence of mu(t) towards mu*. A central limit theorem is proved. In particular, this shows that greater is the interaction repelling faster is the convergence.
引用
收藏
页码:1815 / 1843
页数:29
相关论文
共 18 条
  • [1] ENERGY AND LAW OF ITERATED LOGARITHM
    BAXTER, JR
    BROSAMLER, GA
    [J]. MATHEMATICA SCANDINAVICA, 1976, 38 (01) : 115 - 136
  • [2] BAXTER JR, 1985, ASTERISQUE, P15
  • [3] Self-interacting diffusions
    Benaïm, M
    Ledoux, M
    Raimond, O
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) : 1 - 41
  • [4] ON THE FUNCTIONAL CENTRAL LIMIT-THEOREM AND THE LAW OF THE ITERATED LOGARITHM FOR MARKOV-PROCESSES
    BHATTACHARYA, RN
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 60 (02): : 185 - 201
  • [5] Billingsley P., 1968, WILEY SERIES PROBABI
  • [6] Conway J.B., 1985, Graduate Texts in Mathematics
  • [7] Da Prato Giuseppe, 1991, STOCHASTIC EQUATIONS
  • [8] DIEUDONNE J, 1972, ELEMENTS ANAL, V1
  • [9] Duflo M, 1996, MATH APPL, V23
  • [10] Kunita H., 1990, STOCHASTIC FLOWS STO