Deep Stacking Network for Intrusion Detection

被引:28
|
作者
Tang, Yifan [1 ]
Gu, Lize [1 ]
Wang, Leiting [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
关键词
intrusion detection; ensemble learning; decision tree; deep neural network; deep stacking network; nsl-kdd; FEATURE-SELECTION; MACHINE; MODEL;
D O I
10.3390/s22010025
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Preventing network intrusion is the essential requirement of network security. In recent years, people have conducted a lot of research on network intrusion detection systems. However, with the increasing number of advanced threat attacks, traditional intrusion detection mechanisms have defects and it is still indispensable to design a powerful intrusion detection system. This paper researches the NSL-KDD data set and analyzes the latest developments and existing problems in the field of intrusion detection technology. For unbalanced distribution and feature redundancy of the data set used for training, some training samples are under-sampling and feature selection processing. To improve the detection effect, a Deep Stacking Network model is proposed, which combines the classification results of multiple basic classifiers to improve the classification accuracy. In the experiment, we screened and compared the performance of various mainstream classifiers and found that the four models of the decision tree, k-nearest neighbors, deep neural network and random forests have outstanding detection performance and meet the needs of different classification effects. Among them, the classification accuracy of the decision tree reaches 86.1%. The classification effect of the Deeping Stacking Network, a fusion model composed of four classifiers, has been further improved and the accuracy reaches 86.8%. Compared with the intrusion detection system of other research papers, the proposed model effectively improves the detection performance and has made significant improvements in network intrusion detection.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Enhanced Multigrained Scanning-Based Deep Stacking Network for Intrusion Detection in IoMT Networks
    Musikawan, Pakarat
    Kongsorot, Yanika
    Aimtongkham, Phet
    So-In, Chakchai
    IEEE ACCESS, 2024, 12 : 152482 - 152497
  • [2] Deep logarithmic neural network for Internet intrusion detection
    Wang, Zhendong
    Xu, Zhenyu
    He, Daojing
    Chan, Sammy
    SOFT COMPUTING, 2021, 25 (15) : 10129 - 10152
  • [3] Network Intrusion Detection Combined Hybrid Sampling With Deep Hierarchical Network
    Jiang, Kaiyuan
    Wang, Wenya
    Wang, Aili
    Wu, Haibin
    IEEE ACCESS, 2020, 8 : 32464 - 32476
  • [4] An Autoencoder-Enhanced Stacking Neural Network Model for Increasing the Performance of Intrusion Detection
    Brunner, Csaba
    Ko, Andrea
    Fodor, Szabina
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2022, 12 (02) : 149 - 163
  • [5] A Stacking-Based Deep Neural Network Approach for Effective Network Anomaly Detection
    Nkenyereye, Lewis
    Tama, Bayu Adhi
    Lim, Sunghoon
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (02): : 2217 - 2227
  • [6] Deep Learning Network Intrusion Detection Based on Network Traffic
    Wang, Hanyang
    Zhou, Sirui
    Li, Honglei
    Hu, Juan
    Du, Xinran
    Zhou, Jinghui
    He, Yunlong
    Fu, Fa
    Yang, Houqun
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT III, 2022, 13340 : 194 - 207
  • [7] Deep Learning Applications for Intrusion Detection in Network Traffic
    Getman, A. I.
    Rybolovlev, D. A.
    Nikolskaya, A. G.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (07) : 493 - 510
  • [8] A stacking ensemble of deep learning models for IoT intrusion detection
    Lazzarini, Riccardo
    Tianfield, Huaglory
    Charissis, Vassilis
    KNOWLEDGE-BASED SYSTEMS, 2023, 279
  • [9] A hybrid Intrusion Detection System based on Sparse autoencoder and Deep Neural Network
    Rao, K. Narayana
    Rao, K. Venkata
    Reddy, P. V. G. D. Prasad
    COMPUTER COMMUNICATIONS, 2021, 180 : 77 - 88
  • [10] A Novel Approach to Network Intrusion Detection with LR Stacking Model
    Jarin M.
    Mostafizur Rahaman A.S.M.
    Lecture Notes on Data Engineering and Communications Technologies, 2023, 180 : 334 - 343