Multistage parameter estimation algorithms for identification of bilinear systems

被引:6
作者
Shahriari, Fatemeh [1 ]
Arefi, Mohammad Mehdi [1 ]
Luo, Hao [2 ]
Yin, Shen [3 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Power & Control Engn, Shiraz, Iran
[2] Harbin Inst Technol, Dept Control Sci & Engn, Sch Astronaut, Harbin 150001, Peoples R China
[3] Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, Fac Engn, N-7033 Trondheim, Norway
关键词
Bilinear systems; Parameter estimation; Gradient search; Hierarchical identification; LEAST-SQUARES IDENTIFICATION; GRADIENT ESTIMATION ALGORITHMS; STATE-SPACE SYSTEM; TIME-DELAY; MODEL; NOISE;
D O I
10.1007/s11071-022-07749-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, two methods for parameter estimation of bilinear state-space systems with colored noise, which are expressed by ARMA model, are proposed. Using the hierarchical identification principle and gradient method, to reduce the computational cost, both the four-stage recursive least squares algorithm and the four-stage stochastic gradient algorithm are exploited by which parameter estimation error is reduced and the speed of convergence of parameters is increased. In addition, a bilinear state observer for state estimation is designed to make use of the estimated states in the four-stage recursive least squares and the four-stage stochastic gradient algorithms. Finally, a numerical example and a practical example are provided to indicate the superiority of the proposed methods. The results show that due to the data length increase, the estimation error of the parameters is reduced. Furthermore, the estimated parameters converge to the actual values in a short time.
引用
收藏
页码:2635 / 2655
页数:21
相关论文
共 50 条
[41]   Recursive Estimation Method for Bilinear Systems by Using the Hierarchical Identification Principle [J].
Xu, Ling ;
Zhang, Xiao ;
Ding, Feng .
PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 :979-987
[42]   Hierarchical Gradient-Based Iterative Parameter Estimation Algorithms for a Nonlinear Feedback System Based on the Hierarchical Identification Principle [J].
Dan Yang ;
Yanjun Liu ;
Feng Ding ;
Erfu Yang .
Circuits, Systems, and Signal Processing, 2024, 43 :124-151
[43]   Hierarchical Gradient-Based Iterative Parameter Estimation Algorithms for a Nonlinear Feedback System Based on the Hierarchical Identification Principle [J].
Yang, Dan ;
Liu, Yanjun ;
Ding, Feng ;
Yang, Erfu .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (01) :124-151
[44]   The Auxiliary Model Based Hierarchical Estimation Algorithms for Wave Peak Frequency Identification [J].
An, Shun ;
Wang, Longjin ;
He, Yan ;
Yuan, Jianping .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (03) :745-754
[45]   Recursive minimum component algorithms for parameter estimation of dynamic systems [J].
Li, Huxiong ;
Mu, Bingxian ;
Zuo, Lei .
NEUROCOMPUTING, 2016, 186 :251-257
[46]   Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems [J].
Mao, Yawen ;
Ding, Feng ;
Alsaedi, Ahmed ;
Hayat, Tasawar .
SIGNAL PROCESSING, 2016, 128 :417-425
[47]   Iterative parameter identification algorithms for the generalized time-varying system with a measurable disturbance vector [J].
Jiang, Anning ;
Ji, Yan ;
Wan, Lijuan .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (06) :3527-3548
[48]   Three-stage least squares-based iterative estimation algorithms for bilinear state-space systems based on the bilinear state estimator [J].
Liu, Siyu ;
Zhang, Yanliang ;
Ding, Feng ;
Alsaedi, Ahmed ;
Hayat, Tasawar .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2020, 34 (10) :1501-1518
[49]   Moving data window gradient-based iterative algorithm of combined parameter and state estimation for bilinear systems [J].
Liu, Siyu ;
Ding, Feng ;
Hayat, Tasawar .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (06) :2413-2429
[50]   Parameter estimation of MIMO bilinear systems using a Levy shuffled frog leaping algorithm [J].
Kawaria, Narendra ;
Patidar, Rohan ;
George, Nithin V. .
SOFT COMPUTING, 2017, 21 (14) :3849-3858