Multistage parameter estimation algorithms for identification of bilinear systems

被引:6
作者
Shahriari, Fatemeh [1 ]
Arefi, Mohammad Mehdi [1 ]
Luo, Hao [2 ]
Yin, Shen [3 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Power & Control Engn, Shiraz, Iran
[2] Harbin Inst Technol, Dept Control Sci & Engn, Sch Astronaut, Harbin 150001, Peoples R China
[3] Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, Fac Engn, N-7033 Trondheim, Norway
关键词
Bilinear systems; Parameter estimation; Gradient search; Hierarchical identification; LEAST-SQUARES IDENTIFICATION; GRADIENT ESTIMATION ALGORITHMS; STATE-SPACE SYSTEM; TIME-DELAY; MODEL; NOISE;
D O I
10.1007/s11071-022-07749-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, two methods for parameter estimation of bilinear state-space systems with colored noise, which are expressed by ARMA model, are proposed. Using the hierarchical identification principle and gradient method, to reduce the computational cost, both the four-stage recursive least squares algorithm and the four-stage stochastic gradient algorithm are exploited by which parameter estimation error is reduced and the speed of convergence of parameters is increased. In addition, a bilinear state observer for state estimation is designed to make use of the estimated states in the four-stage recursive least squares and the four-stage stochastic gradient algorithms. Finally, a numerical example and a practical example are provided to indicate the superiority of the proposed methods. The results show that due to the data length increase, the estimation error of the parameters is reduced. Furthermore, the estimated parameters converge to the actual values in a short time.
引用
收藏
页码:2635 / 2655
页数:21
相关论文
共 50 条
  • [31] Data filtering based parameter estimation algorithms for multivariable Box-Jenkins-like systems
    Wang, Yanjiao
    Xu, Ling
    Ding, Feng
    [J]. IFAC PAPERSONLINE, 2015, 48 (08): : 849 - 852
  • [32] Combined state and least squares parameter estimation algorithms for dynamic systems
    Ding, Feng
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (01) : 403 - 412
  • [33] A Hierarchical Approach for Joint Parameter and State Estimation of a Bilinear System with Autoregressive Noise
    Zhang, Xiao
    Ding, Feng
    Xu, Ling
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. MATHEMATICS, 2019, 7 (04)
  • [34] Recursive parameter identification of the dynamical models for bilinear state space systems
    Zhang, Xiao
    Ding, Feng
    Alsaadi, Fuad E.
    Hayat, Tasawar
    [J]. NONLINEAR DYNAMICS, 2017, 89 (04) : 2415 - 2429
  • [35] Recursive parameter identification of the dynamical models for bilinear state space systems
    Xiao Zhang
    Feng Ding
    Fuad E. Alsaadi
    Tasawar Hayat
    [J]. Nonlinear Dynamics, 2017, 89 : 2415 - 2429
  • [36] Recursive generalized extended least squares and RML algorithms for identification of bilinear systems with ARMA noise
    Hafezi, Zahra
    Arefi, Mohammad Mehdi
    [J]. ISA TRANSACTIONS, 2019, 88 : 50 - 61
  • [37] On iterative parameter estimation algorithms for OE and OEMA systems
    Ding, Feng
    Liu, Peter X.
    [J]. 2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 1603 - +
  • [38] Auxiliary Model Based Least Squares Iterative Algorithms for Parameter Estimation of Bilinear Systems Using Interval-Varying Measurements
    Li, Meihang
    Liu, Ximei
    [J]. IEEE ACCESS, 2018, 6 : 21518 - 21529
  • [39] Several gradient parameter estimation algorithms for dual-rate sampled systems
    Chen, Jing
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (01): : 543 - 554
  • [40] Parameter estimation algorithm for state space systems with time-delay based on the iterative identification
    Gu, Ya
    Liu, Jicheng
    Zhu, Peiyi
    Chou, Yongxin
    [J]. PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,