Multistage parameter estimation algorithms for identification of bilinear systems

被引:6
作者
Shahriari, Fatemeh [1 ]
Arefi, Mohammad Mehdi [1 ]
Luo, Hao [2 ]
Yin, Shen [3 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Power & Control Engn, Shiraz, Iran
[2] Harbin Inst Technol, Dept Control Sci & Engn, Sch Astronaut, Harbin 150001, Peoples R China
[3] Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, Fac Engn, N-7033 Trondheim, Norway
关键词
Bilinear systems; Parameter estimation; Gradient search; Hierarchical identification; LEAST-SQUARES IDENTIFICATION; GRADIENT ESTIMATION ALGORITHMS; STATE-SPACE SYSTEM; TIME-DELAY; MODEL; NOISE;
D O I
10.1007/s11071-022-07749-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, two methods for parameter estimation of bilinear state-space systems with colored noise, which are expressed by ARMA model, are proposed. Using the hierarchical identification principle and gradient method, to reduce the computational cost, both the four-stage recursive least squares algorithm and the four-stage stochastic gradient algorithm are exploited by which parameter estimation error is reduced and the speed of convergence of parameters is increased. In addition, a bilinear state observer for state estimation is designed to make use of the estimated states in the four-stage recursive least squares and the four-stage stochastic gradient algorithms. Finally, a numerical example and a practical example are provided to indicate the superiority of the proposed methods. The results show that due to the data length increase, the estimation error of the parameters is reduced. Furthermore, the estimated parameters converge to the actual values in a short time.
引用
收藏
页码:2635 / 2655
页数:21
相关论文
共 50 条
  • [21] Highly efficient parameter estimation algorithms for Hammerstein non-linear systems
    Mao, Yawen
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (04) : 477 - 485
  • [22] Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems
    Li, Meihang
    Liu, Ximei
    Ding, Feng
    NONLINEAR DYNAMICS, 2017, 89 (01) : 197 - 211
  • [23] Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems
    Meihang Li
    Ximei Liu
    Feng Ding
    Nonlinear Dynamics, 2017, 89 : 197 - 211
  • [24] Hierarchical maximum likelihood generalized extended stochastic gradient algorithms for bilinear-in-parameter systems
    Liu, Haibo
    Wang, Junwei
    Meng, Xiangxiang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2022, 43 (02) : 402 - 417
  • [25] A modified model decomposition identification for bilinear-in-parameter systems
    Chen, Huibo
    Fan, Jiangbo
    Li, Jing
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (3-4) : 258 - 263
  • [26] Data filtering-based parameter and state estimation algorithms for state-space systems disturbed by coloured noises
    Cui, Ting
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (09) : 1669 - 1684
  • [27] The Auxiliary Model Based Hierarchical Estimation Algorithms for Bilinear Stochastic Systems with Colored Noises
    Guo, Chunqiu
    Wang, Longjin
    Deng, Fang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (03) : 650 - 660
  • [28] Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems
    Liu, Qinyao
    Ding, Feng
    Yang, Erfu
    DIGITAL SIGNAL PROCESSING, 2018, 83 : 323 - 331
  • [29] Parameter estimation algorithms for hierarchical distributed systems
    Al-Dabass, D
    Zreiba, A
    Evans, DJ
    Sivayoganathan, S
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (01) : 65 - 88
  • [30] State analysis and parameter estimation of bilinear systems via Haar wavelets
    Hsiao, CH
    Wang, LJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (02): : 246 - 250