Multistage parameter estimation algorithms for identification of bilinear systems

被引:6
|
作者
Shahriari, Fatemeh [1 ]
Arefi, Mohammad Mehdi [1 ]
Luo, Hao [2 ]
Yin, Shen [3 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Power & Control Engn, Shiraz, Iran
[2] Harbin Inst Technol, Dept Control Sci & Engn, Sch Astronaut, Harbin 150001, Peoples R China
[3] Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, Fac Engn, N-7033 Trondheim, Norway
关键词
Bilinear systems; Parameter estimation; Gradient search; Hierarchical identification; LEAST-SQUARES IDENTIFICATION; GRADIENT ESTIMATION ALGORITHMS; STATE-SPACE SYSTEM; TIME-DELAY; MODEL; NOISE;
D O I
10.1007/s11071-022-07749-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, two methods for parameter estimation of bilinear state-space systems with colored noise, which are expressed by ARMA model, are proposed. Using the hierarchical identification principle and gradient method, to reduce the computational cost, both the four-stage recursive least squares algorithm and the four-stage stochastic gradient algorithm are exploited by which parameter estimation error is reduced and the speed of convergence of parameters is increased. In addition, a bilinear state observer for state estimation is designed to make use of the estimated states in the four-stage recursive least squares and the four-stage stochastic gradient algorithms. Finally, a numerical example and a practical example are provided to indicate the superiority of the proposed methods. The results show that due to the data length increase, the estimation error of the parameters is reduced. Furthermore, the estimated parameters converge to the actual values in a short time.
引用
收藏
页码:2635 / 2655
页数:21
相关论文
共 50 条
  • [11] Iterative identification algorithms for bilinear-in-parameter systems with autoregressive moving average noise
    Chen, Mengting
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    Alsaedi, Ahmed
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (17): : 7885 - 7898
  • [12] The filtering based parameter identification for bilinear-in-parameter systems
    Wang, Xuehai
    Ding, Feng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (01): : 514 - 538
  • [13] Gradient-Based Iterative Parameter Estimation Algorithms for Dynamical Systems from Observation Data
    Ding, Feng
    Pan, Jian
    Alsaedi, Ahmed
    Hayat, Tasawar
    MATHEMATICS, 2019, 7 (05)
  • [14] Parameter estimation of bilinear systems based on an adaptive particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Sistani, Mohammad-Bagher Naghibi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (07) : 1105 - 1111
  • [15] Iterative state and parameter estimation algorithms for bilinear state-space systems by using the block matrix inversion and the hierarchical principle
    Liu, Siyu
    Ding, Feng
    Yang, Erfu
    NONLINEAR DYNAMICS, 2021, 106 (03) : 2183 - 2202
  • [16] Parameter estimation algorithms for multivariable Hammerstein CARMA systems
    Wang, Dongqing
    Ding, Feng
    INFORMATION SCIENCES, 2016, 355 : 237 - 248
  • [17] Iterative state and parameter estimation algorithms for bilinear state-space systems by using the block matrix inversion and the hierarchical principle
    Siyu Liu
    Feng Ding
    Erfu Yang
    Nonlinear Dynamics, 2021, 106 : 2183 - 2202
  • [18] Iterative Identification Algorithms for Bilinear-in-parameter Systems by Using the Over-parameterization Model and the Decomposition
    Mengting Chen
    Feng Ding
    Ahmed Alsaedi
    Tasawar Hayat
    International Journal of Control, Automation and Systems, 2018, 16 : 2634 - 2643
  • [19] The Gradient-Based Iterative Estimation Algorithms for Bilinear Systems with Autoregressive Noise
    Li, Meihang
    Liu, Ximei
    Ding, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (11) : 4541 - 4568
  • [20] The Gradient-Based Iterative Estimation Algorithms for Bilinear Systems with Autoregressive Noise
    Meihang Li
    Ximei Liu
    Feng Ding
    Circuits, Systems, and Signal Processing, 2017, 36 : 4541 - 4568