On the fine spectrum of the operator Δa,b over the sequence space c

被引:34
作者
Akhmedov, A. M. [1 ]
El-Shabrawy, S. R. [1 ]
机构
[1] Baku State Univ, Fac Mech & Math, AZ-1148 Baku, Azerbaijan
关键词
Spectrum of an operator; Generalized difference operator; The sequence space c;
D O I
10.1016/j.camwa.2011.03.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we examine the fine spectrum of the generalized difference operator Delta(a,b) over the sequence space c. The boundedness of the operator Delta(a,b) has been proved. Also, the norm of this operator has been found. The class of the operator Delta(a,b) includes some other special cases such as the generalized difference operator B(r, s) introduced by Altay and Basar in 2005. Our results not only generalize the corresponding results in the existing literature, but also give results for some more operators. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2994 / 3002
页数:9
相关论文
共 17 条
  • [1] Akhmedov A. M., 2006, Demonstratio Math., V39, P585
  • [2] The fine spectra of the difference operator δ over the sequence space bυp, (1 ≤ p < ∞)
    Akhmedov, Ali M.
    Basar, Feyzi
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (10) : 1757 - 1768
  • [3] Akhmedov AM, 2009, BAKU U NEWS J PHYS M, V3, P34
  • [4] On the fine spectrum of the difference operator Δ on c0 and c
    Altay, B
    Basar, F
    [J]. INFORMATION SCIENCES, 2004, 168 (1-4) : 217 - 224
  • [5] Altay B, 2005, THAI J MATH, V3, P153
  • [6] Altay B., 2005, International Journal of Mathematics and Mathematical Sciences, P3005, DOI [10.1155/IJMMS.2005.3005, DOI 10.1155/IJMMS.2005.3005]
  • [7] Basar F., 2003, Ukrainian Math. J., V55, P136, DOI [10.1023/A:1025080820961, DOI 10.1023/A:1025080820961]
  • [8] On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces lp and bvp, (1 < p < ∞)
    Bilgic, Hueseyin
    Furkan, Hasan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 499 - 506
  • [9] Cartlidge J. P., 1978, THESIS INDIANA U IND
  • [10] de Malafosse B, 2002, HOKKAIDO MATH J, V31, P283