Heavy tail index estimation based on block order statistics

被引:4
作者
Xiong, Li [1 ]
Peng, Zuoxiang [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
关键词
Asymptotic expansion; asymptotic normality; consistency; heavy tail index; INFERENCE;
D O I
10.1080/00949655.2020.1769622
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new kind of heavy tail index estimator is proposed by using block order statistics in this paper. The weak consistency of the estimator is derived. The asymptotic expansion and asymptotic normality of the estimator are considered under second order regular variation conditions. Small sample simulations are presented in terms of average mean and average mean squared error to support our findings by comparison with two known heavy tail estimators established by block order statistics method.
引用
收藏
页码:2198 / 2208
页数:11
相关论文
共 50 条
[21]   Semi-parametric regression estimation of the tail index [J].
Jia, Mofei ;
Taufer, Emanuele ;
Dickson, Maria Michela .
ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01) :224-248
[22]   Estimation of the tail index in the max-aggregation scheme [J].
Paulauskas, Vygantas ;
Vaiciulis, Marijus .
LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (03) :297-315
[23]   Estimation of the tail index in the max-aggregation scheme [J].
Vygantas Paulauskas ;
Marijus Vaičiulis .
Lithuanian Mathematical Journal, 2012, 52 :297-315
[24]   Estimation of the tail index for lattice-valued sequences [J].
Muneya Matsui ;
Thomas Mikosch ;
Laleh Tafakori .
Extremes, 2013, 16 :429-455
[25]   Asymptotic normality of location invariant heavy tail index estimator [J].
Jiaona Li ;
Zuoxiang Peng ;
Saralees Nadarajah .
Extremes, 2010, 13 :269-290
[26]   Asymptotic normality of location invariant heavy tail index estimator [J].
Li, Jiaona ;
Peng, Zuoxiang ;
Nadarajah, Saralees .
EXTREMES, 2010, 13 (03) :269-290
[27]   Censoring heavy-tail count distributions for parameter estimation with an application to stable distributions [J].
Di Noia, Antonio ;
Marcheselli, Marzia ;
Pisani, Caterina ;
Pratelli, Luca .
STATISTICS & PROBABILITY LETTERS, 2023, 202
[28]   Heavy tail robust estimation and inference for average treatment effects [J].
Chaudhuri, Saraswata ;
Hill, Jonathan B. .
ECONOMETRIC REVIEWS, 2025, 44 (05) :544-586
[29]   Efficient estimation of partially linear tail index models using B-splines [J].
Ma, Yaolan ;
Wei, Bo .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2022, 64 (01) :27-44
[30]   Tail index estimation in the presence of long-memory dynamics [J].
McElroy, Tucker ;
Jach, Agnieszka .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) :266-282