On constacyclic codes of length ps over Fpm[u, v]/⟨u2, v2, uv - vu⟩

被引:6
作者
Dinh, Hai Q. [1 ,2 ]
Kewat, Pramod Kumar [3 ]
Kushwaha, Sarika [3 ]
Yamaka, Woraphon [4 ]
机构
[1] TonDuc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Indian Sch Mines, Indian Inst Technol, Dept Math & Comp, Dhanbad 826004, Bihar, India
[4] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
关键词
Constacyclic codes; Codes over rings; Cyclic codes; Dual codes; Repeated root codes; CYCLIC CODES; NEGACYCLIC CODES; 2P(S); RINGS;
D O I
10.1016/j.disc.2020.111890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number, in this paper, we investigate the structures of all constacyclic codes of length p(s) over the ring R-u2,R-v2,R-pm = F-pm[u, v]/< u(2), v(2), uv - vu). The units of the ring R-u2,R-v2,R-pm can be divided into following five forms: alpha, lambda(1) = alpha + delta(1)uv, lambda(2) =alpha + gamma v +delta uv, lambda(3)= alpha + beta u+delta uv, lambda(4) = alpha+beta u+gamma v+delta uv, where alpha, beta, gamma, delta(1) is an element of F-pm* and delta is an element of F-pm. We obtain the algebraic structures of all constacyclic codes of length p(s) over R-u2 ,R-v2,R- pm except (alpha + delta(1)uv)-constacyclic codes, in terms of their polynomial generators and also find the number of codewords in each of these constacyclic codes. The number of constacyclic codes and duals of constacyclic codes corresponding to the units lambda(2), lambda(3) and lambda(4) are determined. We also provide examples to illustrate our results, which include several optimal codes. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
[21]   On constacyclic codes of length 4ps over Fpm + uFpm [J].
Dinh, Hai Q. ;
Dhompongsa, Sompong ;
Sriboonchitta, Songsak .
DISCRETE MATHEMATICS, 2017, 340 (04) :832-849
[22]   Quantum codes from skew constacyclic codes over the ring Fq[u, v]/⟨u2-1, v2-1, uv - vu⟩ [J].
Bag, Tushar ;
Dinh, Hai Q. ;
Upadhyay, Ashish K. ;
Bandi, Ramakrishna ;
Yamaka, Woraphon .
DISCRETE MATHEMATICS, 2020, 343 (03)
[23]   Constacyclic codes over the ring Fp[u, v]/⟨u2-1, v3 - v, uv - vu⟩ and their applications [J].
Ashraf, Mohammad ;
Ali, Shakir ;
Mohammad, Ghulam .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (12)
[24]   CYCLIC CODES OVER THE RING Fp[u, v, w]/⟨u2, v2, w2, uv - vu, vw - wv, uw - wu⟩ [J].
Kewat, Pramod Kumar ;
Kushwaha, Sarika .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) :115-137
[25]   Quantum codes over Fp from cyclic codes over Fp[u, v]/〈u2 − 1, v3 − v, uv − vu〉 [J].
Mohammad Ashraf ;
Ghulam Mohammad .
Cryptography and Communications, 2019, 11 :325-335
[26]   Constacyclic codes over Fpm[u1, u2,..,uk]/<ui2 = ui, uiuj = ujui> [J].
Zheng, Xiying ;
Kong, Bo .
OPEN MATHEMATICS, 2018, 16 :490-497
[27]   CONSTACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm [J].
Dinh, H. A. I. Q. ;
Nguyen, B. A. C. T. ;
Maneejuk, Paravee .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (03) :525-570
[28]   Duality of constacyclic codes of prime power length over the finite non-commutative chain ring Fpm[u,θ]/⟨u2⟩ [J].
Phuto, Jirayu ;
Klin-eam, Chakkrid .
DISCRETE MATHEMATICS, 2022, 345 (06)
[29]   On self-dual constacyclic codes of length ps over Fpm + uFpm [J].
Dinh, Hai Q. ;
Fan, Yun ;
Liu, Hualu ;
Liu, Xiusheng ;
Sriboonchitta, Songsak .
DISCRETE MATHEMATICS, 2018, 341 (02) :324-335
[30]   Skew cyclic codes over Fq [u, v, w]/⟨u2 - 1, v2 - 1, w2 - 1, uv - vu, vw - wv, wu - uw⟩ [J].
Prakash, Om ;
Patel, Shikha .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (02)