TGF- Signaling and the Epithelial-Mesenchymal Transition during Palatal Fusion

被引:35
|
作者
Nakajima, Akira [1 ]
Shuler, Charles F. [2 ]
Gulka, Alexander O. D. [3 ]
Hanai, Jun-ichi [3 ,4 ]
机构
[1] Nihon Univ, Sch Dent, Dept Orthodont, Chiyoda Ku, Tokyo 1018310, Japan
[2] Univ British Columbia, Fac Dent, Dept Oral Biol & Med Sci, Vancouver, BC V6T 1Z3, Canada
[3] Massachusetts Gen Hosp, Ctr Canc Res, Charlestown, MA 02129 USA
[4] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
关键词
palatal fusion; cleft palate; TGF-; signaling; palatal medial edge epithelial (MEE) cells; midline epithelial seam (MES); epithelial-mesenchymal transition (EMT); collective epithelial migration; crowding; MEDIAL-EDGE EPITHELIUM; TRANSFORMING GROWTH FACTOR-BETA-3; COLLECTIVE CELL-MIGRATION; NONSYNDROMIC CLEFT-LIP; CRANIAL NEURAL CREST; GENE-EXPRESSION; III RECEPTOR; DIFFERENTIAL EXPRESSION; FUNCTIONAL-ROLE; BETA ISOFORMS;
D O I
10.3390/ijms19113638
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Signaling by transforming growth factor (TGF)- plays an important role in development, including in palatogenesis. The dynamic morphological process of palatal fusion occurs to achieve separation of the nasal and oral cavities. Critically and specifically important in palatal fusion are the medial edge epithelial (MEE) cells, which are initially present at the palatal midline seam and over the course of the palate fusion process are lost from the seam, due to cell migration, epithelial-mesenchymal transition (EMT), and/or programed cell death. In order to define the role of TGF- signaling during this process, several approaches have been utilized, including a small interfering RNA (siRNA) strategy targeting TGF- receptors in an organ culture context, the use of genetically engineered mice, such as Wnt1-cre/R26R double transgenic mice, and a cell fate tracing through utilization of cell lineage markers. These approaches have permitted investigators to distinguish some specific traits of well-defined cell populations throughout the palatogenic events. In this paper, we summarize the current understanding on the role of TGF- signaling, and specifically its association with MEE cell fate during palatal fusion. TGF- is highly regulated both temporally and spatially, with TGF-3 and Smad2 being the preferentially expressed signaling molecules in the critical cells of the fusion processes. Interestingly, the accessory receptor, TGF- type 3 receptor, is also critical for palatal fusion, with evidence for its significance provided by Cre-lox systems and siRNA approaches. This suggests the high demand of ligand for this fine-tuned signaling process. We discuss the new insights in the fate of MEE cells in the midline epithelial seam (MES) during the palate fusion process, with a particular focus on the role of TGF- signaling.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Vitamin D regulating TGF-β induced epithelial-mesenchymal transition
    Kimberly D Fischer
    Devendra K Agrawal
    Respiratory Research, 15
  • [22] Ephrin Reverse Signaling Mediates Palatal Fusion and Epithelial-to-Mesenchymal Transition Independently of Tgfβ3
    Serrano, Maria J.
    Liu, Jingpeng
    Svoboda, Kathy K. H.
    Nawshad, Ali
    Benson, M. Douglas
    JOURNAL OF CELLULAR PHYSIOLOGY, 2015, 230 (12) : 2961 - 2972
  • [23] Vitamin D Regulating TGF-β Induced Epithelial-Mesenchymal Transition
    Fischer, Kimberly
    Agrawal, Devendra K.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2014, 133 (02) : AB141 - AB141
  • [24] Acetaldehyde Promoted Epithelial-Mesenchymal Transition through Increased TGF-β.
    Mason, C. A.
    Brown, L. A. S.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2009, 179
  • [25] β-catenin activates TGF-β-induced epithelial-mesenchymal transition in adenomyosis
    Yoo, Jung-Yoon
    Ku, Bon Jeong
    Kim, Tae Hoon
    Ahn, Jong Il
    Ahn, Ji Yeon
    Yang, Woo Sub
    Lim, Jeong Mook
    Taketo, Maketo M.
    Shin, Jung-Ho
    Jeong, Jae-Wook
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2020, 52 (10): : 1754 - 1765
  • [26] Acetaldehyde promoted epithelial-mesenchymal transition through increased TGF-β
    Ceceile, A.
    Mason, Wight
    Brown, Lou Ann S.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2008, 32 (06) : 226A - 226A
  • [27] Oridonin prevents epithelial-mesenchymal transition and TGF-β1-induced epithelial-mesenchymal transition by inhibiting TGF-β1/Smad2/3 in osteosarcoma
    Sun, Yang
    Jiang, Xiubo
    Lu, Ying
    Zhu, Jianwei
    Yu, Lisha
    Ma, Bo
    Zhang, Qi
    CHEMICO-BIOLOGICAL INTERACTIONS, 2018, 296 : 57 - 64
  • [28] Spatiotemporal Localization of Periostin and Its Potential Role in Epithelial-Mesenchymal Transition during Palatal Fusion
    Kitase, Yukiko
    Yamashiro, Keisuke
    Fu, Katherine
    Richman, Joy M.
    Shuler, Charles F.
    CELLS TISSUES ORGANS, 2011, 193 (1-2) : 53 - 63
  • [29] Epithelial mesenchymal transition of epithelial cells induced by TGF-β signaling in lymphedema
    Park, Hyeung Ju
    Kataru, Raghu P.
    Shin, Jinyeon P.
    Mehrara, Babak J.
    JOURNAL OF IMMUNOLOGY, 2022, 208 (01):
  • [30] TGF-β1 regulates cell fate during epithelial-mesenchymal transition by upregulating survivin
    Lee, J.
    Choi, J-H
    Joo, C-K
    CELL DEATH & DISEASE, 2013, 4 : e714 - e714