Seasonal and regional changes in temperature projections over the Arabian Peninsula based on the CMIP5 multi-model ensemble dataset

被引:17
|
作者
Almazroui, Mansour [1 ]
Khalid, M. Salman [1 ]
Islam, M. Nazrul [1 ]
Saeed, Sajjad [1 ,2 ]
机构
[1] King Abdulaziz Univ, Ctr Excellence Climate Change Res, Dept Meteorol, Jeddah 21589, Saudi Arabia
[2] Katholieke Univ Leuven, Dept Earth & Environm Sci, Leuven, Belgium
关键词
Temperature projection; Seasons; Regions; CMIP5; multi-models; Arabian Peninsula; CLIMATE-CHANGE; SAUDI-ARABIA; PRECIPITATION; UNCERTAINTIES; VARIABILITY; TRENDS; MODEL;
D O I
10.1016/j.atmosres.2020.104913
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study explores the seasonal to inter-seasonal and regional changes in temperature (and related uncertainties) over the Arabian Peninsula, by using the multi-model ensemble from the Couple Models Intercomparison Project Phase 5 (CMIP5), under two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5. The seasonal temperature changes are examined for three future periods (2030-2039; 2060-2069 and 2090-2099) with reference to the present climate (1971-2000). The 22-member CMIP5 mean multi-model ensemble (MME) shows a significant increase in temperature (at the 95% confidence level) over the Arabian Peninsula during all three future periods, under both RCPs. The results indicate that the southern and central regions of the Arabian Peninsula are likely to experience larger future temperature changes during the winter and spring seasons. On the other hand, amplification in future temperature changes over the northern and central regions of the Peninsula will more likely occur during the summer and autumn seasons. The interseasonal analysis of the MME shows large temperature biases during the winter (Dec-Feb) and summer (Jun Aug) months, while the simulated results closely resemble the observations during both transition periods i.e. spring (Mar-May) and autumn (Sep-Nov). The inter-seasonal results also reveal larger (smaller) temperature increases during September, October and November (March, April) for all future periods under both RCP4.5 and RCP8.5. Results further indicate that the central region of the Arabian Peninsula will experience higher temperatures during all seasons in the 21st century. This information on changes in projected temperature is valuable for the long-term planning of the region.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Projecting Changes in Temperature Extremes in the Han River Basin of China Using Downscaled CMIP5 Multi-Model Ensembles
    Xiao, Weiwei
    Wang, Bin
    Liu, De Li
    Feng, Puyu
    ATMOSPHERE, 2020, 11 (04)
  • [32] Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models
    Ongoma, Victor
    Chen, Haishan
    Gao, Chujie
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (03) : 1375 - 1392
  • [33] Projected Seasonal Changes in Large-Scale Global Precipitation and Temperature Extremes Based on the CMIP5 Ensemble
    Zhan, Wang
    He, Xiaogang
    Sheffield, Justin
    Wood, Eric F.
    JOURNAL OF CLIMATE, 2020, 33 (13) : 5651 - 5671
  • [34] Future projections of synoptic weather types over the Arabian Peninsula during the twenty-first century using an ensemble of CMIP5 models
    Ahmed M. El Kenawy
    Matthew F. McCabe
    Theoretical and Applied Climatology, 2017, 130 : 173 - 189
  • [35] Non-stationary return levels of CMIP5 multi-model temperature extremes
    Cheng, Linyin
    Phillips, Thomas J.
    AghaKouchak, Amir
    CLIMATE DYNAMICS, 2015, 44 (11-12) : 2947 - 2963
  • [36] Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble
    Bothe, O.
    Jungclaus, J. H.
    Zanchettin, D.
    CLIMATE OF THE PAST, 2013, 9 (06) : 2471 - 2487
  • [37] Comparison of regional characteristics of land precipitation climatology projected by an MRI-AGCM multi-cumulus scheme and multi-SST ensemble with CMIP5 multi-model ensemble projections
    Ito, Rui
    Nakaegawa, Tosiyuki
    Takayabu, Izuru
    PROGRESS IN EARTH AND PLANETARY SCIENCE, 2020, 7 (01)
  • [38] Changes in temperature and precipitation extremes in the CMIP5 ensemble
    Kharin, V. V.
    Zwiers, F. W.
    Zhang, X.
    Wehner, M.
    CLIMATIC CHANGE, 2013, 119 (02) : 345 - 357
  • [39] Differences in multi-model ensembles of CMIP5 and CMIP6 projections for future droughts in South Korea
    Song, Young Hoon
    Shahi, Amsuddin
    Chung, Eun-Sung
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (05) : 2688 - 2716
  • [40] Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble
    Ongoma, Victor
    Chen, Haishan
    Gao, Chujie
    Nyongesa, Aston Matwai
    Polong, Francis
    NATURAL HAZARDS, 2018, 90 (02) : 901 - 920