A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions

被引:92
作者
Chen, Liwei [1 ,2 ,3 ]
Si, Yifan [1 ,2 ,3 ]
Zhu, Hai [1 ,2 ,3 ]
Jiang, Ting [1 ,2 ,3 ]
Guo, Zhiguang [1 ,2 ,3 ]
机构
[1] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Peoples R China
[2] Hubei Univ, Minist Educ, Key Lab Green Preparat & Applicat Funct Mat, Wuhan 430062, Peoples R China
[3] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
关键词
PVDF; Porous membrane; Oil/water separation; Emulsion separation; In-situ elimination; OIL-WATER SEPARATION; ULTRAFAST SEPARATION; SPILL CLEANUP; NETWORK FILMS; WASTE-WATER; MESH; SPONGE; HYDROPHILICITY; NANOEMULSIONS; PURIFICATION;
D O I
10.1016/j.memsci.2016.08.026
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The influences and treatments of oil/water mixtures have been plaguing, people for many years. To deal with it, the fabrication of separation membranes becomes a significant technology in the application to oily wastewater treatment. Except for the well-known phase inversion method which is promising for polymeric separation membrane fabrication, another imaginable method referred to as in-situ elimination here still suffers from major difficulty in the uniform dispersion of dissoluble micro/nano-particles in polymeric matrix. Aiming at in-situ elimination method, a series of free-standing thin PVDF membranes with interconnected porous structures are fabricated based on low-cost starting materials through a simple process of tape-casting, drying and immersing, in the presence of pore-forming agent of citric acid monohydrate (CAM). Substantially, the pore formation mechanism is studied, which is resulted from the recrystallization of pore-forming agent (CAM) and subsequent in-situ elimination in NaHCO3 solution. The fabricated free-standing porous PVDF membrane with thickness of similar to 5 gm and surface pore size of < 500 nm showed great flexibility and superoleophilic, under-oil superhydrophobic, anti-water-fouling properties. For the porosity and selective wettability, their applications in oil/water separation are studied also and the results show that the PVDF membrane can separate not only immiscible oil/water mixtures quickly but also various surfactant-stabilized water-in-oil nanoscale emulsions, with filtration flux up to 318 L M-2 h(-1) and separation efficiency of 99.81% under the action of self-gravity. To the best of our knowledge, this is the first time the polymeric separation membranes have been positively fabricated by in-situ elimination, which provides a new avenue for porous polymeric membrane fabrication in membrane science field and shows the application in oil/water or emulsion separation. This work provides a new porous membrane-forming method and an energy-efficient strategy for separating immiscible oil/water mixtures and surfactant-stabilized water-in-oil nano emulsions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:760 / 768
页数:9
相关论文
共 38 条
[1]   Versatile Fabrication of Ultralight Magnetic Foams and Application for Oil-Water Separation [J].
Chen, Ning ;
Pan, Qinmin .
ACS NANO, 2013, 7 (08) :6875-6883
[2]   A Functionally Integrated Device for Effective and Facile Oil Spill Cleanup [J].
Cheng, Mengjiao ;
Gao, Yongfeng ;
Guo, Xianpeng ;
Shi, Zhaoyuan ;
Chen, Jian-feng ;
Shi, Feng .
LANGMUIR, 2011, 27 (12) :7371-7375
[3]  
Chenran M., 1998, J MEMBRANE SCI, V151, P13
[4]   A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water [J].
Choi, Sung-Jin ;
Kwon, Tae-Hong ;
Im, Hwon ;
Moon, Dong-Il ;
Baek, David J. ;
Seol, Myeong-Lok ;
Duarte, Juan P. ;
Choi, Yang-Kyu .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) :4552-4556
[5]   Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation [J].
Crick, Colin R. ;
Gibbins, James A. ;
Parkin, Ivan P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) :5943-5948
[6]   A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water [J].
Feng, L ;
Zhang, ZY ;
Mai, ZH ;
Ma, YM ;
Liu, BQ ;
Jiang, L ;
Zhu, DB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (15) :2012-2014
[7]   Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of oil-in-water nanoemulsions [J].
Gao, Shou Jian ;
Zhu, Yu Zhang ;
Zhang, Feng ;
Jin, Jian .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (06) :2895-2902
[8]   Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO2 Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions [J].
Gao, Shou Jian ;
Shi, Zhun ;
Zhang, Wen Bin ;
Zhang, Feng ;
Jin, Jian .
ACS NANO, 2014, 8 (06) :6344-6352
[9]   An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation [J].
Hu, Liang ;
Gao, Shoujian ;
Zhu, Yuzhang ;
Zhang, Feng ;
Jiang, Lei ;
Jin, Jian .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) :23477-23482
[10]   Biomimetic superoleophobic surfaces: focusing on their fabrication and applications [J].
Jiang, Ting ;
Guo, Zhiguang ;
Liu, Weimin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) :1811-1827