Diophantine approximation of Mahler numbers

被引:8
作者
Bell, Jason P. [1 ]
Bugeaud, Yann [2 ]
Coons, Michael [3 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Strasbourg, Dept Math, F-67084 Strasbourg, France
[3] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会; 奥地利科学基金会;
关键词
QUILLEN-SUSLIN THEOREM; ALGEBRAIC-NUMBERS; REAL NUMBERS; ARITHMETIC CHARACTERISTICS; IRRATIONALITY MEASURES; FUNCTIONAL-EQUATIONS; REGULAR SEQUENCES; COMPLEXITY; AUTOMATA; SERIES;
D O I
10.1112/plms/pdv016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that F(x) is an element of Z[[x]] is a Mahler function and that 1/b is in the radius of convergence of F(x) for an integer b >= 2. In this paper, we consider the approximation of F(1/b) by algebraic numbers. In particular, we prove that F(1/b) cannot be a Liouville number. If, in addition, F(x) is regular, we show that F(1/b) is either rational or transcendental, and in the latter case that F(1/b) is an S-number or a T-number in Mahler's classification of real numbers.
引用
收藏
页码:1157 / 1206
页数:50
相关论文
共 34 条
  • [11] Bell JP, 2013, J INTEGER SEQ, V16
  • [12] Bugeaud Y., 2004, Cambridge Tracts in Mathematics, V160
  • [13] On two notions of complexity of algebraic numbers
    Bugeaud, Yann
    Evertse, Jan-Hendrik
    [J]. ACTA ARITHMETICA, 2008, 133 (03) : 221 - 250
  • [14] Christol G., 1979, Theoretical Computer Science, V9, P141, DOI 10.1016/0304-3975(79)90011-2
  • [15] Cobham A., 1968, 1968 ninth annual symposium on switching and automata theory, P51
  • [16] Cobham A., 1972, Math. Syst. Theory, V6, P164, DOI [10.1007/BF01706087, DOI 10.1007/BF01706087]
  • [17] Dumas Ph., 1993, LECT NOTES COMPUTER, V700, P457
  • [18] EFFECTIVE NULLSTELLENSATZ AND SERRE CONJECTURE (THE QUILLEN-SUSLIN THEOREM) IN COMPUTER ALGEBRA
    FITCHAS, N
    GALLIGO, A
    [J]. MATHEMATISCHE NACHRICHTEN, 1990, 149 : 231 - 253
  • [19] KOKSMA J. F., 1939, Monatsh. Math. Phys., V48, P176
  • [20] Liouville J., 1844, CR HEBD ACAD SCI, V18, P883