Cantor Set Arithmetic

被引:21
作者
Athreya, Jayadev S. [1 ]
Reznick, Bruce [2 ]
Tyson, Jeremy T. [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
MSC: Primary 28A80; Secondary; 11K55; SUMS;
D O I
10.1080/00029890.2019.1528121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every element u of can be written in the form , where x, y are elements of the Cantor set C. In particular, every real number between zero and one is the product of three elements of the Cantor set. On the other hand, the set of real numbers v that can be written in the form v = xy with x and y in C is a closed subset of with Lebesgue measure strictly between and . We also describe the structure of the quotient of C by itself, that is, the image of under the function x/y.
引用
收藏
页码:4 / 17
页数:14
相关论文
共 13 条
[1]   Sums of Cantor sets [J].
Cabrelli, CA ;
Hare, KE ;
Molter, UM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :1299-1313
[2]   Sums of Cantor sets yielding an interval [J].
Cabrelli, CA ;
Hare, KE ;
Molter, UM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 73 :405-418
[3]  
Fleron JF., 1994, Math. Magn, V67, P136, DOI [10.1080/0025570X.1994.11996201, DOI 10.1080/0025570X.1994.11996201, DOI 10.2307/2690689]
[4]  
Gorodetski A., 2015, ARXIVORGPDF151007008
[5]   ON THE TOPOLOGICAL-STRUCTURE OF THE ARITHMETIC SUM OF 2 CANTOR SETS [J].
MENDES, P ;
OLIVEIRA, F .
NONLINEARITY, 1994, 7 (02) :329-343
[6]  
Pawlowicz M., 2013, TATRA MT MATH PUBL, V56, P47, DOI DOI 10.2478/TMMP-2013-0026
[7]  
Randolph J. F., 1940, AM MATH MONTHLY, V47, P549, DOI DOI 10.2307/2303836
[8]   On the Dimension of Iterated Sumsets [J].
Schmeling, Jorg ;
Shmerkin, Pablo .
RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, :55-+
[9]  
Shallit J., 1991, MATH MAG, V64, P351
[10]  
Steinhaus H., 1917, SELECTED PAPERS, P1